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Abstract: -  In this work we present a mathematical model for fluid-dynamic flows on road networks, based 
on conservation laws according with Piccoli et al. approach. The road network is represented by means of a 
links and nodes structure. A description of Riemann Solver at junction is given and a complete 
implementation of this model is then presented, together with some results from computational experiences 
on different real case studies of road networks. 
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1. Introduction 
With this paper we want to focus on some road traffic 
problems. In particular we consider a road network with 
some junctions and, from a macroscopic point o view, we 
want to analyze a model describing this problem by means 
of some significant functions. We formulate it on the basis 
of conservation laws, proposed by Lighthill and Whitham 
([14], [15]) and Richards [16].  
Thus, on each single road, the evolution of this nonlinear 
model is governed by the scalar hyperbolic conservation 
law:  

( ) (1)         ,0=∂+∂ ρρ fxt  
 

where � � ��t,x� � �0,�max �,  �t,x� � �2 ,  is the 
density of cars, �max  is the maximal density of cars, 

( ) vf ρρ =  is the flux and v the average velocity. We 

further assume that v  is a smooth decreasing function of the 
density �  and f  is concave. 
Such a conservation law describes a fluid-dynamic 
approach useful to perform macroscopic phenomena as 
shock waves formation and propagation. Recently, fluid-
dynamical approaches were extended to flows on urban 
networks: some based on the LWR model (1) and some 
others based on the Aw-Rascle second order model [2]. 
For the urban setting, the simple LWR model, ([14], [15], 
[16]) is sufficient to describe most of the important traffic 
behaviour features and it is the only one for which a fairly 
complete theory and numerics are available. 
Let’s to describe a road network as a finite collection of 
roads meeting at some junctions that play a key role, since 
the system at a junction is under-determined even after 
imposing the conservation of cars. In order to obtain a 
unique solution of the Riemann problem at junctions 

(problem with constant initial data on each road), we need 
to assume some rules, so we can construct solutions via 
wave-front tracking technique, by means of defining some 
right of way parameters. 
The paper is organized as follows. We introduce the model 
for traffic flow on a road network in Section 2. The next 
Section 3 deals with prototype description and simulation 
cases developing. Finally, we discuss, in the last Section 
about results and future works. 
 
2. Fluid-dynamic model for traffic 
simulation  
Let’s consider a road network as a finite number of roads, 
modelled by intervals Ii � �ai,bi � � � , 
i � 1, . . . ,N, ai � bi, with one of the endpoints that can be 
infinite. The roads are connected by some junctions, and 
each junction J  has a finite number of incoming and 
outgoing roads. On each road the problem agrees with 
equation (1). 
We make the following assumptions on the flux function: 
f : �0,�max � � �  is a smooth, strictly concave function, 

f�0� � f��max � � 0, f
�

�x� � C � ��.  Hence, there 

exists a unique � � �0,�max �  such that f
�

��� � 0.   
One example of velocity function ensuring (H) is: 

v��� � v max 1 �
�

�max
,

 

where v max  is the maximal velocity of cars, which travel 
along the road. Then the flux is given by 

f��� � v max� 1 �
�

�max
.
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For a single conservation law (1), a Riemann Problem (RP) 
is a Cauchy problem for an initial data piecewise constant 
with only one discontinuity. The solutions are either formed 
by continuous waves (rarefactions) or by travelling 
discontinuities (shocks). The condition at the junctions 
(Rankine-Hugoniot relation) holds: 

�
i�1

n

f��i�t,bi
� �� � �

j�n�1

n�m

f �j t,a j
� ,   #   

 
where nii ,...,1, =ρ , are the incoming densities and  

nii ,...,1, =ρ  the outgoing ones. It represents a different 
way of writing the conservation of cars: it expresses the 
equality of incoming and outgoing fluxes. 
Riemann Problems at junctions are under-determined even 
after prescribing the conservation of cars. Existence and 
Uniqueness of solution are guaranteed by three following 
rules: 
(A) There are some fixed coefficients representing the 
drivers’ preferences. These coefficients denote the traffic’s 
distribution from incoming to outgoing roads. For this 
reason, it’s useful to define a traffic distribution matrix:  

A � �� ji� j�n�1,...,n�m , i�1,...,n � �m�n ,
 

such that  

.,...,1;,...,1,1 ,10
1

mnnjniji

mn

nj
ji ++===<< �

+

+=

αα  

(B) Respecting (A), the drivers choose roads such that 
the flux can be maximized, that is we suppose that no car 
can stop without cross the junction. 
(C) Assuming that m < n (m = 1 and n = 2), let C be the 
amount of cars that can enter the outgoing road. We fix a 
right of way parameter  ] [1,0∈p . Then pC cars come from 
the first incoming road and (1–p)C cars come from the 
second one. 
 
2.1 Riemann Solver 
In this section, we recall the construction of the Riemann 
solver at junctions, which satisfy rules (A), (B) and (C). 
Particularly, we treat two case studies: junctions of type 

12×  (two incoming roads and one outgoing road) and 
junctions of type 21×  (one incoming road and two 
outgoing roads).  
 

Proposition. Let ��1,0 ,�2,0 , . . . ,�n�m ,0 �  be the initial 

densities of a RP at junction and ��
max , � � 1, . . . ,nand 

��
max , � � n � 1, . . . ,n � mbe the maximum fluxes that 

can be obtained on incoming roads and outgoing ones, 
respectively. Then: 

 

( ) [ ]
( ) ] ]�

�
�

∈
∈

=
,1, if,
,,0 if,

0,

0,0,max

σρσ
σρρ

γ
ϕ

ϕϕ
ϕ f

f            n,..,1=ϕ            (2) 

 
( ) [ ]
( ) ] ]�

�
�

∈
∈

=
,1, if,
,,0 if,

0,0,

0,max

σρρ
σρσ

γ
ψψ

ψ
ψ f

f   .,..,1 mnn ++=ψ     (3) 

 
Let us consider a junction of type 12×  (a and b are the 
incoming roads and c  is the only outgoing road. 
Considering rule (C), the solution to the Riemann problem 

with initial data ��a,0 ,�b,0 ,�c,0 �  is constructed in the 
following way. Since we want to maximize the through 
traffic (rule (B)), we set: 

��c � min��a
max � �b

max ,�c
max �,

 

 where �i
max ,  i = a, b, is defined as in (2) and �c

max as in 

(3). In fact, 
��c  is the maximal through flux, which can 

respect the Rankine-Hugoniot condition at the junction, i.e. 
the conservation of cars through the junction.  
Notice that in this case the matrix A (or rule (A)) is simply 
given by the column vector (1,1), thus it gives no additional 
restriction. This is due to the fact that there is a single 
outgoing road, so cars must flow to that outgoing road 
necessarily. 
Consider now the space ��a ,�b �and the line:  
 

,
1

ab q
q γγ −=     (4) 

 
 defined according to the rule (C). Let P be the point of 

intersection of the line (4) with the line �a � �b �
��c.  The 

final fluxes must belong to the region 

� � ��a ,�b � : 0 � �i � �i
max , 0 � �a � �b � ��c, i � a,b .

There are two different cases: 
 
• P belongs to Ω , 
• P does not belong to Ω . 
 

 
Fig 1. First case. 
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Fig 2. Second case. 

 
The two cases are represented in Figures 1 and 2.  In the 

first case, we set �
��a ,��b � � P,  while in the second case 

we set ���a ,��b � � Q,  where Q is the point of 
� � ��a ,�b � : �a � �b �

��c  closest to the line (4). 

Once we have determined 
��a  and 

��b  (and 
��c ), we can 

find in a unique way 
��i , i � �a,b,c� . This is again due to 

restrictions on waves velocities. 
Let us now consider the junction 21× , with one incoming 
(a) and two outgoing (b, c) rods. In detail,     is the only 
incoming road while     and     are the outgoing roads.  
Here, no additional rule is needed thus only rules (A) and 
(B) are used.  The distribution matrix A, of rule (A), takes 
the form 

A �
�

1 � �
,

 
where � � �0,1�  and �1 � ��  denotes the percentage of 
cars which, from road a, goes to road b and c, respectively. 
Thanks to rule (B), the solution to a RP is: 

�� � ���a ,��b ,��c � � ���a ,���a , �1 � ����a �,
 

where  

��a � min �a
max ,

�b
max

� ,
�c

max

1 � �
.

 

Once we have obtained  
��a ,    

��b   and  
��c  , it is possible 

to find in a unique way  
��i  ,  i � �a,b,c� . 

 
3 Implementing the FLUIDISM prototype 
According to the model described in the previous sections, 
it was realized a prototype for the simulation of vehicular 
traffic: FLUIDSIM. 
The prototype describes the behaviour of cars densities 
along the network as function of time.  
In order to realize the simulation, it is necessary to insert a 
series of data input, related to the network topology, that has 
to be analyzed, and the starting initial configuration.  

The topological informations (name of the road, length, 
impacts on some junctions) can be detected by GIS 
(Geographical Information System) database (file .dbf), that 
describes the network, so as to obtain all the informations 
related to roads (arcs) and junctions (nodes), that constitute 
the network itself [1]. 
Then, data related to the initial configuration for the 
simulation will have to be given. Particularly, the initial 
values of densities along the roads, the duration of 
simulation, and the numerical scheme to use, will be 
required. Moreover, as you can have different values of 
densities on same roads, it is necessary to use as input 
parameter a discretization, that allows to segment roads in 

subintervals of length
�
�

�
�
�

�

deltax
li , where il  represents the 

length of the i-th road, i = 1, …, N, where N indicates the 
numbers of considered roads and deltax the parameter given 
as input for the discretization.  
The tool produces as output a series of  dbf files, as function 
of simulation final time. In every file, for each road and for 
each its segment, the recorded vehicular density value is 
reported. Starting from an initial configuration of empty 
network, you will obtain that the first dbf file will have, for 
each road, values of densities on every segment equal to 
zero.  
In order to have a consistent vision of these products, it is 
interesting to report the values of densities, that are in every 
file .dbf obtained on the studied network loading, in every 
GIS application, the shape file (.shp), that described the 
examined network. In this way, it is possible to have a 
direct and immediate graphical vision of the density along 
the network in a given instant of time. 
Furthermore, reproducing in sequence the obtained various 
maps, it is possible to have a video, that describes the real 
behaviour of densities along the whole studied network, as 
function of the given input parameters. 
The prototype was implemented in language ANSI C ++ 
and compiled with gcc in linux environment.  
In what follows, its architecture is reported. 
 

 
 

Fig 3. Architecture of the FLUIDSIM prototype. 
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3.1 Details of the prototype code  
As function of the simulation final time, for every iteration 
the functions for nodes and arches network elaboration are 
required in sequence, and also the routine for the generation 
of output data. Particularly, in what follows, we present the 
pseudocode of the main function of the prototype: 
 
For every iteration   
 For every node Nn ∈    
  Elaborate_node ( n ) 
 For every arc Ee ∈    
  Elaborate_arc( e ) 
Give_output( t ) 
 
In what follows, a short description of the required 
functions in the main of the tool. 
 
Elaborate_node: the function, solving a linear programming 
problem, determines the optimal value of the flux and of the 
density to assign to the endpoints of an assigned incident 
link. At the beginning, this function used an extern routine 
“lp_solve.exe” in order to solve the linear programming 
problem. As such routine made the tool execution very 
heavy, it was then substituted by an inner function, that 
simulates the simplex method for the resolution of the 
problem. The performances of the prototype, in terms of 
execution times using an extern function or an inner one to 
solve the PL problem, are reported in section 4. 
 
Elaborate_arch: as we told before, such function, for each 
road, can determine the density value on each segment, that 
constitutes itself. When the number of roads increases, 
according to the precision of the discretization parameter 
deltax and to the numerical scheme used [6], the execution 
of this routine can lead to some bottlenecks for the 
prototype performances.  
Give_output: for each instant of time t, the corresponding 
dbf file is produced as output and, as already explained, it 
will contain, for each road, the value of density for each 
segment that constitutes itself. 
 
Definitely, the prototype is able to verify how a given traffic 
flux can act on the whole urban network. Moreover, 
modifying the initial configuration of the given data, it is 
possible to analyze the whole network. 
In this way, it is possible to give improvement to the 
vehicular flux in neuralgic zones of the urban network, 
zones that are very sensitive to heavy traffic situations.        
 
4 Running Time Analysis 
All the test results presented in this section were performed 
on a example network composed by 24 roads and 12 
junctions, as presented in Figure 4.Thetest was performed 
on a single cpuPentium 41.7GHzPC with2GbRAM.All 
times are reported in seconds, and do not include the time 

needed for the exportation and the processing of the output 
data for successive visualization.  
 

 
 

Fig. 4. The extracted network used for the code test. 
 

In Figure 5 the computational time is reported at varying the  
simulated period. For 30 minutes simulations, the Godunov 
[12] and the 1-st order kinetic schemes require less that 60 
seconds of computation, while the 2-nd order scheme needs 
about 10 seconds for each a minute of simulation. In Figure 
6 a similar analysis is presented with respect to the size of 
the space step  s. Results confirm the strong computational 
effort required by the 2-nd order approximation scheme. 

 

 
Fig. 5. Comparing numerical approximation schemes: 
computational time (seconds) vs simulated period (minutes).  
 
In Figures 7,8 the computational time profile is presented 
for the Godunov approximation scheme, comparing the 
performance obtained through the embedded simplex 
algorithm routine with respect to the use of the external LP 
solver. For this numerical scheme the efficiency gain is 
relevant, while the use of the 2-nd order approximation 
scheme(see results in Figure 9) strongly reduces the impact 
of invoking an external solver, since in that case the 
computational bottleneck is in the arc processing routine.  
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4.1 Real networks case studies  
Simulations were performed on real urban networks were 
made to test the suitability of this prototype in order to 
reproduce real traffic situations, and to test the scalability of 
the code on large size networks. In particular the code was 
tested on the whole traffic network extracted from the city 
of Salerno, Italy(see Figures 10,11) composed  

 
 

Fig. 6. Comparing numerical approximation schemes: 
computational time (seconds) vs (number of segments)/meter 

 
 

Fig. 7. Computational gain when embedding the PL solver 
algorithm in the code(Godunov numerical approximation 
scheme): computational time (seconds) vs simulated 
period(minutes) by almost 1200 roads. A focus was then 
performed on the junction of Salerno Fratte, as reported in Figures 
10, 11.  

 
Fig. 8. Computational gain when embedding the LP solver 
algorithm in the code (Godunov numerical approximation 
scheme): computational time(seconds) vs (number of 
segments)/meter 

 

 
 

Fig. 9. Computational gain when embedding the LP solver 
algorithm in the code (2-nd order Kinetic numerical 
approximation scheme): computational time(seconds) vs (number 
of segments)/meter  
 

 
 

Fig. 10. The full network of Salerno (before the simulation). 
 

 
 

Fig. 11. The full network of Salerno (after the simulation). 
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Fig. 12. A focus on a relevant junction: Salerno Fratte (before the 
simulation).  
 

 
 

Fig. 13. A focus on a relevant junction: Salerno Fratte (after the 
simulation).  
 
5   Conclusion 
In this paper we deal with traffic problems on road network 
according with Piccoli et al. [8] fluid-dynamic approach that 
analyzes traffic by means of conservation law on each road 
of networks. Then we show some simulations carried out by 
a simulation prototype. Finally we want to end this work 
opening a new future aim about optimization of traffic 
behaviour along road networks. In fact we intend to 
compute some optimal value for distribution and right of 
way parameters in order to optimize networks performance. 
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