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Abstract:The Relaxation to have only square matrices in standard ICA leads to an approximation of the inverse of
non-quadratic matrices to determine the separation matrix. Synthetic data sets as well as speech data are used to
compare the capability of such approaches, called overcomplete ICA on an underdetermined basis. Due to the fact
that the mixing matrices are not invertible (because they are not square), the quality of the sources’ reconstruction
is not excellent. The most extreme case of an undetermined ICA is single channel ICA. But in this paper not the
reduction to one sensor is considered but in a maximum case the reduction from eight sensors to two sensor signals.
It is shown, which separation quality can still be achieved for the blind separation of the underlying sources. For
an improved classification the algorithms are also comparedto well-known standard ICA-algorithms.
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1 Introduction

Independent component analysis (ICA) is a promis-
ing blind signal separation technique [4, 7, 1]. There
are many different solutions for ICA in the standard
case with an equal number of sources and sensors. A
more difficult task is to find the unknown mixing ma-
trix and especially the reconstruction of the sources
in the case of overcomplete ICA (also referred to as
underdetermined ICA) in which there are less sensors
than sources available. There are some well-known
analyses of algorithms for standard ICA, but so far
there is no overview and evaluation of algorithms for
overcomplete ICA. This paper deals with the com-
parison of different approaches in that special case.
Points of interest are the analysis of the algorithms for
a decreasing number of sensors, a decreasing num-
ber of samples and a rising noise level. Every aspect
is tested in a Monte Carlo run simulation and graph-
ically illustrated. A selection of the results is pre-
sented. The algorithms are compared in the overcom-
plete and standard ICA case with speech data and syn-
thetic data with subgaussian and supergaussian distri-
butions. Their performance is measured by the signal-
to-interference-ratio (SIR) and other performance in-
dices, see section 4.2. In overcomplete ICA it is of-
ten possible to estimate the mixing matrix whereas
it is very difficult to obtain the estimated sources as
the matrix is not quadratic and thereby not invert-
ible. Only in special cases, such as very sparse data,
this problem is solvable. Most algorithms for over-

complete ICA are restricted to supergaussian (or even
sparse) data and do not achieve satisfying results in
other cases. Therefore a Haar-wavelet-transformation
is used to produce sparsity in the data.

Section 2. gives a short introduction to the model
of overcomplete ICA. Three different approaches to
overcomplete ICA are briefly discussed in section 3.
In section 4. the test design is described and section
5. shows some of the results.

2 The overcomplete ICA Model
We consider the following model with the un-
known, statistical independent original signalss =
(s1, . . . , sm), the recorded signalsx = (x1, . . . , xn)
and the unknown linear mixing matrixA with linear
independent columns (that is full rank),

x = As with x ∈ R
n×T ,

s ∈ R
m×T ,A ∈ R

n×m,
(1)

with T samples andn (recorded) respectivelym (orig-
inal) signals,m > n, see [1]. The task of ICA is to
estimate the unknown matrixA and the sourcess. In
the standard model of ICA,m = n, the sourcess can
be recovered from the mixing matrixA asA is invert-
ible1. In overcomplete ICA this is different. The mix-
ing matrix is not invertible and thus it is not enough
to find the unmixing-matrix like in standard ICA.

1The sources can only be recovered up to a scaling and per-
mutation factor.
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Therefore most overcomplete-ICA-algorithms consist
of two steps. First the mixing matrix is estimated, sec-
ond the sources are reconstructed. The second step
can be performed by the use of the Moore-Penrose-
Pseudo-Inverse or by L1-norm-minimization. We
compare the effect of the two approaches to the re-
construction’s quality. The quality of each algorithm
depends on the algorithm’s parameters, the performed
steps of preprocessing and the added level of noise.
Our testsuite allows a comparison under self-definable
testing conditions [2].

3 Algorithms

In this paper three different approaches for overcom-
plete ICA are examined. They are briefly described
below.

3.1 Geometric ICA

Geometric ICA (geoica) by Fabian Theis et al., Uni-
versity of Regensburg, 2003, see [3]. Theis et al. have
generalized a geometric algorithm for standard ICA
to solve overcomplete ICA as well. For stability of
the geometric algorithm it is required that the sources
are supergaussian and unimodal. It is assumed that
the data is normalized on the unit sphere. Given the
recorded data vectorx the aim is to determine the
weights of the demixing matrixW with ŝ = Wx.
Therefore2n starting points are picked on the unit
sphereSm−1 ∈ R

m. According to a chosen learn-
ing rate these elements are moved towards the ICA
directions taking into account a zero-neighbourhood-
function and anabsolute winner-takes-all learning.
For detailed information see [3]. The sources are re-
covered in a second step by a maximum likelihood
approach.

3.2 Inlier-Based ICA

Inlier-based ICA (ibica) by Harmeling, Meinecke and
Müller, Fraunhofer FIRST.IDA, Berlin, 2004, refer to
[4], [5]. Ibica also is a geometric algorithm. It is ex-
tended by the use of an outlier index to directly find
the ICA-directions. After projecting the data on the
unit sphere the data points are sorted from very typ-
ical points (inlier) to very untypical points (outlier).
The idea is, that dense regions of the data, the inlier,
directly determine the ICA-directions, which are 1D-
subspaces across the origin. By the use of this outlier
index a robust algorithm for finding the mixing matrix
is achieved.

3.3 Mean Field ICA

Mean Field ICA (mfica) by Ole Winther et al., IMM,
Technical University of Denmark, 2002, compare [6].
Mean Field ICA is a probabilistic ICA approach. The
mixing matrix is determined by maximum likelihood
estimation. To estimate the mean and covariances of
the sources, variational mean field theory and linear
response theory is used. Various parameters can be
chosen, especially to define prior information. The
likelihood of the parameters is given by

P (x|A,Σ) =

∫

P (x|A,Σ, s)P (s)ds, (2)

with the noise covariance matrixΣ. The mixing ma-
trix is estimated by maximum a posteriori (MAP)

AMAP = argmaxAP (A|x,Σ). (3)

For further information see [6].

4 Set-up

The simulation for thoroughly empirical verfification
of the performance comparison were carried out based
on a specific ICA-testsuite and well established per-
formance measurements.

4.1 Testsuite

The tests are accomplished by a testsuite2 that sup-
ports the evaluation of BSS algorithms in an auto-
mated way. This Matlab-based testsuite was devel-
oped to solve the overcomplete ICA problem as well
as the standard case. Arbitrary algorithms can be in-
tegrated and tested.
In our tests we considered speech data and synthetic
data sets. In Matlab the synthetic source signals were
generated as follows, refer to [7]:

• Subgaussian: rand(n,5000).

• Supergaussian:

− log(rand(n,T)).*max(0,sign(rand(n,T)-0.5)).

The speech data consist of polish speech data. Each
dataset has T=5000 samples. Different linear mixing
matrices are considered, e.g. of the dimension2 × 3
and2 × 4. The values of the mixing matrices are ran-
domly chosen with uniformly distributed elements in
the interval(0, 1). The algorithms have been initial-
ized with combinations of their individually required

2The testsuite ICYNATOR was developed at the University of
Münster in 2005, see [2].

Proceedings of the 6th WSEAS International Conference on SIGNAL PROCESSING, Dallas, Texas, USA, March 22-24, 2007         147



parameters. In the case of overcomplete ICA they all
got the number of original sources as input. Sample
reduction is done in an automated way. The size of
the window used by the algorithms is gradually de-
creased.

4.2 Performance Measurements

The performance is determined according to several
measurements.

• The signal-to-interference-ratio (SIR), see [7].

• The (squared) intersymbol interference (ISI),
calledperform2in the test, see [8].

ISI =
n
∑

i=1

(

n
∑

j=1

p2

ij

maxkp2

ik

− 1

)

+
n
∑

j=1

(

n
∑

i=1

p2

ij

maxkp2

kj

− 1

)

,

(4)

for P = pij = AW. ISI is zero, if P is the
unit matrix (i.e. the unmixing-matrixW has been
perfectly estimated) and positive otherwise. Thus
ISI calculates the difference between the mixing
and the separating matrices.

5 Simulation Results

This section contains the achieved performance re-
sults of the three tested algorithms. The following
problems have been tested, for illustration take a look
at the figures.

• Separation of a linear mixing of eight (four) speech
signals with a decreasing number of sensors. Fig-
ure 1 shows the results.

• Separation of three speech signals under different
levels of noise in the case of two sensors. The re-
sults are measured by SIR, see left part of figure
2.

• Performance of the three algorithms in separating
supergaussian, subgaussian and speech data in the
case of two sensors and three sources. Each with
the same2 × 3 mixing matrices and evaluated by
boxplots, see figure 4.

• Separation of four speech signals with a decreasing
number of samples. The resulting SIR is presented
in the right part of figure 2.

• Comparison to well-known algorithms in the case
of standard-ICA with a3×3 mixing of speech sig-
nals. Figure 3 shows boxplots of the resulting SIR.

Altogether the performance results of overcomplete
ICA are not very satisfying as in many cases not
all of the sources are reconstructed correctly. Of-
ten sources are found twice and others are neglected.
All three tested algorithms got the number of origi-
nal sources as input and did not discover the source
number alone. In some cases good reconstruction re-
sults were achieved, but as we only consider the mean
values over 100 runs, the few good results of the algo-
rithms are not preponderating. The tests show that the
performance of the algorithms falls with a decreasing
number of sensors (figure 1). Geoica performs infe-
rior to the other two algorithms. Mean field ICA re-
mains with the lowest increase of the performance in-
dex. Astonishingly the performance results for over-
complete ICA are not affected by the addition of gaus-
sian noise in our test, the moderate performance is not
lowered (see left part of figure 2). It is demonstrated
that geoica and ibica are restricted to supergaussian
data (especially speech data) and perform kind of poor
by separating subgaussian data (figure 4). The per-
form2 value is far from zero. Mfica achieves similar
results for subgaussian and supergaussian data. Fur-
thermore the algorithms have been tested in the stan-
dard ICA case. In comparison to well-known algo-
rithms like cubica [9], efica [10], jade [11] or flexica
[12] their performance was less satisfying, see figure
3. The right part of figure 2 shows the performance
of the algorithms in a standard ICA problem with four
speech signals and sample reduction. As expected the
performance falls with a decreasing number of sam-
ples, except in the mean field ICA case. For a specific
window size of samples (T = 1500), mfica is slightly
outperformed by efica only.

6 Conclusion

Performance strength and weaknesses of a selection
of overcomplete ICA-approaches have been evalu-
ated. In the case of overcomplete ICA the quality of
source reconstruction is not excellent except for indi-
vidually cases. There are many other approaches to
solve overcomplete ICA. So far, the author of these
approaches did not provide a unique implementation,
e.g. a matlab version. So the impact of individual
implementations and its accuracy is of considerable
influence [13]. It would be interesting to get an gen-
eral overview of all overcomplete ICA methods and
their performances. A first step towards this idea has
been realized. Especially the influence of different
preprocessing and sparsification methods is an impor-
tant issue for further research to review. Furthermore,
the question arises if there exists a general bound-
ary of the quality of source reconstruction for over-
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Fig. 1: Mean perform2 of 100 runs: Linear mixture of four (eight) speech signals, each with 5000 samples, with
a decreasing number of sensors, from4 to 2 in the left case and from8 to 2 in the right case. All three algorithms
perform better the more sensors are given. Geoica achieves worse results than ibica and mfica.

Fig. 2: Each graph: Mean SIR of 100 runs, each with 5000 samples; Left: Mixture of three speech signals, with
linear mixing matrices of size2 × 3, with different levels of noise. Right: Mixture of four speech signals, with
linear mixing matrices of size4 × 4, with a decreasing number of samples. For most algorithms the performance
lowers with a falling number of samples. Efica outperforms the other algorithms.

complete ICA. The comparison to standard ICA ap-
proaches clearly underlines a performance trade-off to
standard ICA efficiency, but mean field ICA clearly
demonstrates an almost equal performance for a spe-
cific window size of samples. From the continuum of
ICA related signal separation point of view, an com-
parison to single channel ICA approaches (e.g. see.
[14]) is also strongly recommended.
Acknowledgements: Our thanks to Frank Meinecke
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the algorithm ibica. Thanks as well to Ole Winther
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Fig. 3: Mean SIR of 100 runs: Mixture of three speech signals,each with 5000 samples, with linear mixing
matrices of size3×3. In comparison to the standard algorithms, geoica and mfica perform worse, they reach lower
SIR values. Efica achieves the best average results.
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(a) speech data

(b) subgaussian data

(c) supergaussian data

Fig. 4: Mean perform2 of 100 runs: Mixture of three signals ofdifferent data sets, each with 5000
samples, with linear mixing matrices of size2 × 3.
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