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Abstract: - Embedding of graphs is an important and interesting approach to parallel computing.  Generally it 
can be used to model simulation of networks and algorithm structures on different networks. This paper shows 
that there is an embedding of the Johnson Networks into the Hamming Network. 
The vertex set of the Johnson Scheme G(n,k) is the set of all k-subsets of a fixed n-set. Two vertices A and B in 
G(n,k) are adjacent if |A∩B|=k-1.  The ith graph of the Johnson Scheme Gi(n,k) is an extension of G(n,k) such 
that vertices are adjacent if they are they are i–related, that is, if |A∩B|=k-i.  i is referred to as the Johnson 
Distance. The combined ith graphs of the Johnson Scheme SGi(n) is the graph formed by the union of all the 
graphs Gi(n,k) where 0<k<n. A Johnson Network is a network modeled after Johnson graph Gi(n,k). 
The Hamming Scheme H(n,q,r) is an association scheme whose vertex set Qn is the set of all words of length n 
over the alphabet Q of q symbols. Two vertices are adjacent if and only if they are r-related, that is, if they 
differ in exactly r coordinate positions where r is referred to as the Hamming Distance.  A Hamming Network 
is a network modeled after the Hamming graph.   
This paper shows that every Johnson Network modeled after Gi(n,k) can also be embedded into the Hamming 
Network modeled after H(n,2,2i). This is done by showing that there is an embedding of the combined ith 
graphs of the Johnson Scheme SGi(n), into the Hamming Network H(n,q,r), when q=2 and r=2i.. 
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1 Introduction 

 
1.1 On Association Schemes 
The theory of association schemes has its roots in 
the statistical design of experiments and in the 
study of groups acting on finite sets. In 1973, an 
important new role for association schemes 
emerged through the work of Philippe Delsarte [10] 
and others: certain association schemes were shown 
to play a central part in the study of error-correcting 
codes. [1] 
     Since 1973, the area has been quite active and 
many advances have been made. Yet researchers 
continue to approach the subject from a variety of 
distinct perspectives. Current research in the area 
includes statistical design of experiments, PBIBD's, 
finite group actions, character theory, distance-
regular graphs, P- and Q-polynomial association 
schemes, extremal graph theory, knot theory, spin 
models, Type II matrices, geometries, buildings, 
coding theory, combinatorial designs etc. 
 
 
1.2 On Graph Embeddings  

An embedding is a representation of a topological 
object, manifold, graph, field, etc. in a certain space 
in such a way that its connectivity or algebraic 
properties are preserved.  In graph embedding, 
connectivity is preserved. [2]  An embedding of a 
source graph G into a host graph is a mapping of the 
vertices of G into vertices of H and of the edges of G 
into simple paths of H.[3]   Obviously, it would be 
best and it would definitely satisfy embedding 
requirements if the source graph is a spanning 
subgraph of the host graph. 
     Graph embedding is an important and interesting 
approach to parallel computing.  It is used to model 
simulation of networks and algorithm structures on 
different networks.  In this process involves 
assigning subtasks of one network topology to 
another network topology such that communication 
overhead is low.  Furthermore, if an algorithm is 
already developed for an architecture using one type 
of topology, then it can easily be ported to another 
topology.  [7],[8],[9] Embedding may also give 
useful hints on lower and upper bounds on potential 
performance of algorithms mapped to parallel 
machines with  static interconnection network 
topology [3]. 
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1.3 This Study 
By embedding the Johnson Networks into the 
Hamming Network, we open the possibility that 
certain algorithms developed for the Johnson 
Network may also work the Hamming Network.  In 
terms of association schemes, showing such 
embedding establishes a pattern on the “behavior” of 
the two association schemes, i.e. when their ith 
associates coincide, thus showing a relationship 
between the two schemes.  This is done by showing 
that each Johnson Graph  Gi(n,k) is a subgraph of 
after H(n,2,2i). 
 
2   Definitions 
 
2.1 Johnson Scheme and the Johnson Graphs 
Let n and k be fixed positive integers. The Johnson 
Scheme G(n,k) is an association scheme whose 
vertex set is the set of all k-subsets of a fixed set of n 
elements. Two vertices A and B are i-related if 
|A∩B| = k-i, and i is referred to as the johnson 
distance. This scheme has k classes. [4] 
     The Johnson Graph G(n,k) or the graph of the 
Johnson Scheme of the first order is the undirected 
graph where the vertices are all the k-subsets of a 
fixed n-set.  Two vertices A and B are adjacent if and 
only if |A∩B| = k-1 [5].   The order of Gi(n,k) is nCk 
and that each vertex is k(n-k) regular. 
     The ith Johnson Graph Gi(n,k) is the undirected 
graph where the vertices are also all the k-subsets of 
a fixed n-set.  Here two vertices A and B are adjacent 
if and only if |A∩B| = k-i. A Johnson Network is a 
network modeled after Johnson graph Gi(n,k). 
The Combined ith Johnson Graphs  SGi(n) or the 
ith Johnson Networks is the graph formed by 
getting the graph sum of all the Gi(n,k) graphs. Thus  
 

(1) 
 

V(SGi(n)) will be equal to V(Gi(n,0)) ∪ V(Gi(n,1)) 
∪ V(Gi(n,2)) ∪…∪ V(Gi(n,n)).  
     Furthermore, since n(V(Gi(n,k))) = nCk then 
n(V(SGi(n))) is equal to 

(2) 
 

and V(SGi(n)) is set of the 2n subsets of the set 
{1,2,3,…,n} 
     Thus SG1(2) is the graph formed by combining 
the graphs Gi(2,0), Gi(2,1) & Gi(2,2) as we see in 
Figure 1. The vertex set V(SG1(2)) is set of the 22=4 

subsets of the set {1,2}, namely {}, {1}, {2} and 
{1,2} 

 
 
 
 

 
Figure 1 SGi(2)  is the graph formed by combining the 

graphs G1(2,0), G1(2,1) & G1(2,2) 
    
2.2 Hamming Scheme and Hamming Graphs 
Let Q be an alphabet of q symbols. The Hamming 
Scheme H(n,q) is an association scheme whose 
vertex set Qn, the set of all words of length n over Q. 
Two words are r-related if they differ in exactly r 
coordinate positions, where r is referred to as the 
hamming distance. In the Hamming Graph 
H(n,q,r), the vertices are adjacent if and only if they 
are r-related.   This scheme has n classes. [4]   Thus 
|V(H(n,q,r)|=qn. 
     A Hamming Network is a network modeled 
after the Hamming graph. 
 
 
 
 
 
 
 
 

Figure 2 The H(3,2,m) – cubes, m = 1,2,3 
 
     The k-subgraph of the Hamming Graph 
Hk(n,2,r) is the induced subgraph of the Hamming 
Graph H(n,q,r) where q=2, such a vertex  v ∈ 
V(Hk(n,2,r)) if and only if v ∈ V(H(n,2,r)) and v is 
of parity k.  
     Since k has n possible values, then H(n,2,r) has n  
k-subgraphs Hk(n,2,r).  The number of all strings of 
length n that are of parity k is just as same as taking 
k elements from a set of size n.  Thus n(V(Hk(n,2,r))) 
= nCk

 

      The Parity Subgraph of the Hamming Graph 
HS(n,2,r) is the spanning subgraph of the Hamming 
Graph H(n,2,r) such that vertices u and v are 
adjacent if and only if they are of the same parity.  
HS(n,2,r) is the graph formed by getting the graph 
sum of all the k-subgraphs of the Hamming Graph 
Hk(n,2,r). Thus  

 
(3) 

 
     Furthermore, since n(V(Hk(n,2,r))) = nCk then 
n(V(HS(n,2,r))) is equal to 
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(4) 
 
     Since HS(n,2,r) is a spanning subgraph of 
H(n,2,r), then V(HS(n,2,r)) = V(H(n,2,r)).  However, 
the two graphs are still not isomorphic because there 
exists edges uv ∈ E(H(n,2,r)) where uv ∉ 
E(HS(n,2,r)) since u and v are not of the same parity.   
 
 
3   The Embedding 
The outline of our strategy for showing this 
embedding is as follows: 

• Show Gi(n,k) is isomorphic to Hk(n,2,2i) 
• Show SGi(n) is isomorphic to HS(n,2,2i) 
• Conclude that SGi(n) is a spanning subgraph of 

H(n,2,2i) 
• Conclude that there is an embedding of SGi(n) 

into H(n,2,2i)  
 

Lemma 1 Gi(n,k) is isomorphic to Hk(n,2,2i) 
 
Proof: 
We do this by first introducing a mapping P: Gi(n,k) 

 Hk(n,2,2i).  Thus, we have to show that there is a 
mapping P(v)=v’, of v = a1 a2 a3…an ∈ V(Hk(n,2,2i)) 
into v’ ∈ V(Gi(n,k)) such that aj = 1 if and only if j 
∈v’.  We will then show that this mapping preserves 
adjacency. 
     Let H(n,2,m) by a Hamming Graph and 
V(H(n,2,m)) be the set of 2n vertices which are 
binary numbers.  Each vertex v is an n-tuple {a1 a2 
a3…an} where aj is either 0 or 1.  Let Hk(n,2,m) by 
the kth subgraph of the Hamming Graph, thus v 
∈V(Hk(n,2,m)) if there are k bits aj = 1 for 1 < j < n. 
If we define a set Svi for each vertex in vi 

∈V(Hk(n,2,m)), where 1<  i < nCk  and j ∈ Svi  if aj = 
1 in vi.  Thus, we would be obtaining a total of nCk 
sets Svi each of which is of size k.  Furthermore, 
each set Svi  will resemble exactly one vertex v’ in 
Gi(n,k).  Thus, there will be a one-is-to-one onto 
correspondence between a vertex v ∈V(Hk(n,2,m)) 
and a vertex v’ ∈ Gi(n,k) 
     Hence, there is a mapping P(v)=v’, of v = 
a1a2a3…an ∈ V(Hk(n,2,m)) into and v’∈ V(Gi(n,k)) 
such that aj = 1 if and only if j ∈ v’  � 
     For instance, if n=3 then H(3,2,m) is a Hamming 
Graph and V(H(3,2,m)) be the set of 23 = 8 vertices: 
000, 001, 010,  011, 100, 101, 110 and 111. 
     Furthermore, for k = 0 to n 
 

V(H0(3,2,m)) = {000} 
V(H1(3,2,m)) = {001, 010, 100} 

V(H2(3,2,m)) = {101, 110, 011} and 
V(H3(3,2,m)) = {111} 
 

     Also, if we get the all vertices of Gi(3,k), for k = 0 
to n, we would be having the set of the 23 =8 subsets 
of the set {1,2,3}namely: 
 

V(Gi(3,0))={} 
V(Gi(3,1))={1},{2},{3}  
V(Gi(3,2))={1,2},{2,3}, {1,3} and 
V(Gi(3,3))={1,2,3} 
 

     P is the mapping P(v)=v’ yielding the values in 
Table 1 

 
Table 1. The Mapping P(v)=v’ for k = 0 to 3 
 

k v v’ 
0 000 {} 

001 {3} 
010 {2} 1 
100 {1} 
011 {2,3} 
101 {1,3} 2 
110 {1,2} 

3 111 {1,2,3} 
 

     Now, we will have to show that this mapping 
preserves adjacency and non-adjacency.  Note that 
two vertices v’x and v’y ∈ V(Gi(n.k)) are adjacent if 
and only if they have the same number of elements k 
and v’x ∩ v’y = k-i.  Furthermore, there are i elements 
in v’x that are not in v’y and vice versa. See Figure 3 
 

 ) Figure 3 The adjacent vertices v’x and v’y in Gi(n,k  
 
     This also means that vx and vy ∈ V(Hk(n,2,2i)) 
where vx and vy each have k bits = 1.  According to 
definition, two vertices in Hk(n,2,m) are adjacent if 
and only if they are different in m bits.  
Note also that if vertices v’x and v’y are adjacent in 
Gi(n,k), their corresponding vertices vx and vy in 

Proceedings of the 6th WSEAS Int. Conference on TELECOMMUNICATIONS and INFORMATICS, Dallas, Texas, USA, March 22-24, 2007         56



Hk(n,2,2i) are also adjacent if and only if they are 
different in 2i bits.  For a vertex v’x ∈ Gi(n,k) to be 
adjacent to another vertex v’y ∈ Gi(n,k), |v’x - v’y| =  
|v’y - v’x| = i.   
     Since |v’x - v’y| = i, there has to be i bits in vx = 1 
but are 0 in vy.  And since |v’y -v’x| = i, there are 
another i bits vy = 1 but are 0 in vx.  Hence, vx and vy  
are different in a total of 2i bits. 
In Figure 4 shows us two vertices vy = 001110 and vx 
= 110100.  They both have k bits = 1 but there i bits 
(i=2) in vx = 1 but are 0 in vy and there are another i 
bits vy = 1 but are 0 in vx.  They are different in k-i 
bits where k-1 = 1.  And they are different in a total 
of 2i = 4 bits. 
     They have corresponding vertices v’x =  {1,2,4} 
and v’x =  {4,5,6}in V(SGi(n)).   They have the same 
number of elements say k=3 and v’x ∩ v’y =  k-i  =1.  
There are i=2 elements in v’x that are not elements of 
v’y  and vice versa.   
     Hence two adjacent vertices v’x and v’y ∈ 
V(SGi(n)) have corresponding vertices vx and vy ∈ 
V(Hk(n,2,m)) that are adjacent if and only if m = 2i. 
   

 
 
 
 

 

 

 
 

Figure 4 Vertices adjacent in both Gi(n,k) 

and Hk(n,2,2i) 

     Now since all the vertices in Gi(n,k) have 
corresponding vertices in Hk(n,2,2i) and all edges in 
Gi(n,k) have corresponding edges in Hk(n,2,2i), and 
vice versa, then the ith graphs of the Johnson 
Scheme Gi(n,k) is isomorphic to the kth subgraph of 
the Hamming Scheme Hk(n,2,2i).  
 
Lemma 2 SGi(n) is isomorphic to HS(n,2,2i) 
 
Proof: 
Note that HS(n,2,2i) is graph formed by getting the 
graph sum of all the k-subgraph of the Hamming 
Graph Hk(n,2,r), while SGi(n) is the graph formed by 
getting the graph sum of all the Gi(n,k) graphs.  
Furthermore, n(V(HS(n,2,2i))) and n(V(SGi(n))) are 
both equal to 2n.  Also the mapping P(v)=v’ still 
holds for this case where v = a1a2a3…an ∈ 
V(HS(n,2,m)) and v’∈ V(SGi(n)) such that aj = 1 if 

and only if j ∈ v’.  Note also that since SGi(n) and 
HS(n,2,2i) are both graph sums, then they will just 
contain the union of all the edges of their respective 
component graphs and no edges will be added or 
subtracted.  Thus the adjacency of vertices are 
preserved. 
     Hence, SGi(n) is isomorphic to HS(n,2,2i) � 
     Now, since HS(n,2,2i) is a spanning subgraph of 
H(n,2,2i), then SGi(n) is also a spanning subgraph of 
H(n,2,2i).  
 
Theorem 1 There is an Embedding of the combined  
ith graphs of the Johnson Scheme SGi(n) into the 
graph of the Hamming Scheme H(n,2,2i) 
 
Proof: 
Since according to Lemma 2, SGi(n) is also a 
spanning subgraph of H(n,2,2i), we can also conclude 
that there is an embedding of the ith graphs of the 
Johnson Scheme SGi(n) into the graph of the 
Hamming Scheme H(n,2,2i).  Since the source graph 
is also a subgraph, this is an embedding where load, 
congestion, dilation and expansion are all equal to 1. 
� 
     Moreover, since SGi(n) is defined as the graph 
sum of all ith Johnson Graphs Gi(n,k) graphs, these 
also hold: 
 
Corollary 1  Every ith Johnson Graph Gi(n,k) is a 
subgraph of the Hamming Graph H(n,2,2i).   
 
Corollary 2  Every Johnson Network Gi(n,k) can be 
embedded into the Hamming Network H(n,2,2i) 
 
     In terms of associations schemes, the instance 
when q=2 and r=2i is one wherein two vertices v’x 
and v’y that are i-related in the Johnson Scheme 
Gi(n,k) have their counterpart vertices vx and vy in the 
Hamming Scheme H(n,q,r) also r-related.  In other 
words, the combined graphs of the Johnson Scheme 
embeds the graph of the Hamming Scheme when q=2 
and the Hamming Distance is twice the Johnson 
Distance.  Thus Johnson Networks modeled after 
Gi(n,k) can be embedded into Hamming Networks 
modeled after H(n,2,2i). 
     The following figures show embeddings of 
Gi(n,k) into H(n,2,r) where the alphabet Q = {0,1}.  
As mentioned, SGi(n) and H(n,2,r) have 
corresponding nodes.  The graph H(n,2,r) is shown 
by the black edges and the binary labels.  The graphs 
SGi(n), and HS(n,2,2i), are shown here with colored 
edges, with  a particular color assigned for each 
Gi(n,k) and Hk(n,2,2i).  The vertices of Gi(n,k) are 
labeled as sets and are also colored accordingly. 
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4   Conclusion 
By embedding the Johnson Networks into the 
Hamming Network, it can be concluded that certain 
algorithms developed for a network whose 
architecture is similar to that of the combined ith 
Johnson Networks may also be implemented for 
another network whose architecture is similar to that 
of the Hamming Network.   
     Furthermore, it may be concluded that such 
algorithms may also be implemented into networks 
whose architectures are isomorphic to the Hamming 
Network.   
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