
Reliable Directory Service and Message Delivery for Large-scale
Mobile Agent Systems

JINHO AHN
College of Natural Sciences, Kyonggi University

Department of Computer Science
San 94-6 Yiuidong, Yeongtonggu, Suwonsi Gyeonggido 443-760

Republic of Korea

Abstract: In this paper, we introduce a reliable directory service and message delivery mechanism for large-scale
mobile agent systems to address both agent mobility and directory service node failures. The mechanism enables
each mobile agent to keep its forwarding pointer only on the small number of its visiting nodes in an autonomous
manner. As this desirable feature has every mobile agent’s migration route be very considerably shortened, the time
for forwarding each message to the agent becomes much smaller. Also, this feature causes each node to maintain
much fewer forwarding pointers of mobile agents on its storage than in the traditional approach. Moreover, the
mechanism allows each movement path of a mobile agent to be replicated in an effective way to preserve scalability
of our proposed mechanism. This replication may require a little more agent location updating costs, but much
more accelerate delivery of each message to the corresponding mobile agent.

Key–Words:Mobile agent system, Directory service, Message delivery, Reliability, Scalability

1 Introduction

As wireless devices such as PDAs and cellular phones
and new Internet based technologies, for example,
grid, ubiquitous computing and active networks, has
been rapidly emerged, modern computing environ-
ments are becoming very complex[1, 7]. Also, mobil-
ity of users and devices leads to their softwares being
executed on dynamically changing environments that
support different capabilities and types of available lo-
cal resources respectively. In terms of software de-
velopment, these issues make it difficult to design the
application programs because it is impossible to ob-
tain completely accurate information about their dy-
namically changing runtime environments in advance.
Thus, it is essential to develop a new middleware plat-
form allowing software components to adapt to their
local execution environments at runtime.

Mobile agent technology is gaining significant
popularity as a potential vehicle for considering the
complexity and variety[1, 7, 8]. Mobile agent is an
autonomously running program, including both code
and state, that travels from one node to another over
a network carrying out a task on user’s behalf. How-
ever, as the size of mobile agent systems rapidly in-
creases, scalability is becoming the most important is-
sue and forces some components of the systems, e.g.,
agent communication, deployment, monitoring and
security, to be redesigned. Among the components,

designing reliable inter-agent communication facility
in a scalable manner is essential for the systems.

Generally, this facility consists of two compo-
nents, directory service and message delivery. First
of all, to address the scalability issue, the central-
ized dependency on the home node of each mobile
agent, which is the critical drawback of home-based
approach[8], should be avoided in case of its location
updating and message delivery. In terms of this over-
head, forwarding-pointer based approach[5, 9, 12] is
more preferable than the home-based one. However,
the forwarding-pointer based approach has three prob-
lems in case that it is applied to a large-scale mobile
agent system. First, it may lead to a very high message
delivery cost whenever each message is sent to a mo-
bile agent. The approach has this undesirable feature
because as mobile agents highly migrate, the length
of their forwarding paths becomes rapidly increasing.
Second, this approach requires a large size of storage
where each directory service node maintains agent lo-
cation information. The second problem results from
greatly raising the number of forwarding pointers the
node should keep on its storage because the system
generally serves a large number of mobile agents run-
ning concurrently. To attempt to consider this prob-
lem, a previous mechanism[9] introduces a type of up-
date message, inform message, to include an agent’s
current location for shortening the length of trails of

Proceedings of the 6th WSEAS Int. Conference on TELECOMMUNICATIONS and INFORMATICS, Dallas, Texas, USA, March 22-24, 2007 59

forwarding pointers. It enables a node receiving the
message to update its agent location information if
the received information is more recent than the one
it had. However, it presents no concrete and efficient
solutions for this purpose, for example, when update
messages should be sent, and which node they should
be sent to. The third drawback is that even if among all
service nodes on a forwarding path of a mobile agent,
only one fails, any message destined to the agent can-
not be delivered to it. This feature may significantly
degrade reliability of the inter-agent communication
facility, which becomes unpractical. To consider this
third issue, a fault-tolerant directory service for mo-
bile agents using redundancy of forwarding pointers
[10] was proposed, but doesn’t address the first and
the second problems stated previously.

In this paper, we present a new fault-tolerant
and efficient mobile agent communication mechanism
based on forwarding pointers to solve the three prob-
lems as follows. For the first and the second problems,
each mobile agent enables its forwarding pointer to
be saved only on the small number of its visiting
nodes in an autonomous manner. As this desirable
feature has every mobile agent’s migration route be
very considerably shortened, the time for forwarding
each message to the agent is much smaller. Addition-
ally, this feature causes each node to maintain much
fewer number of forwarding pointers of mobile agents
than in the traditional approach. For the third problem,
each movement path of a mobile agent is replicated in
an effective way to preserve the previously stated scal-
ability of our proposed mechanism. Also, this replica-
tion much more accelerates delivering each message
to the corresponding mobile agent whereas resulting
in a little more agent location updating costs.

2 System Model

A distributed agent based system assumed in this pa-
per is asynchronous: each agent has no global mem-
ory and no global clock, and is executed at its own
speed and communicates with each other only through
messages at finite, but arbitrary transmission delays.
This system is augmented with a unreliable failure
detector [4] in order to solve the impossibility prob-
lem on distributed consensus [6]. The system consists
of a set of agent service nodes. Each service node
supports an environment in which agents can oper-
ate safely and securely, and provides a uniform set
of services that visiting agents can access its local re-
sources in a limited way regardless of their locations.
An agent is initially created on a service node, called
home node of the agent, and is given a unique identi-
fier within the node. So, each agent can be identified

as a globally unique object in the system by using the
combination of its local identifier and the identifier of
its home node. When an agent migrates in the sys-
tem, its code and state information are captured and
then transferred to the next node. After arriving at
the node, the mobile agent resumes and performs its
task, if needed, by interacting with other agents. In
order to perform an assigned task on behalf of a user,
a mobile agenta executes on a sequence ofl(l > 1)
service nodesIa =[Nhome, N1, · · ·, N(l−1)] accord-
ing to its itinerary, which may be statically determined
before the mobile agent is launched at its home node
or dynamically while progressing its execution. It is
assumed that communication channels support stan-
dard asynchronous message passing and are immune
to partitioning, and reliable and FIFO. Agents can mi-
grate and messages be passed along these channels.
Finally, we assume that each service node has crash-
failure semantics, in which they lose contents in their
volatile memories and stop their executions [13].

3 Related Work

A broadcast-based mobile agent communication pro-
tocol was proposed by Murphy and Picco[11]. The
protocol guarantees transparent and reliable inter-
agent communication and can also provide multicast
communication to a set of agents. But, to locate the
message destination, it has to contact every visiting
host in the network. Thus, its large traffic overhead
makes broadcasts impractical in large-scale mobile
agent systems.

Belle[2] proposed a hierarchical structure-based
mechanism to form a location directory consisting of
a hierarchy of servers. The location server at each
level keeps lower-level object location information.
For each object, the information is either a pointer to
an entry at a lower-level location server or the agent’s
actual current location. However, this hierarchy can-
not always be easily formed, especially in the Internet
environment. Moreover, this mechanism may cause
useless hops to be taken along the hierarchy.

Feng[3] introduced a mailbox-based mechanism
to provide location-independent reliable message de-
livery. It allows messages to be forwarded at most
once before they are delivered to their receiving
agents. Also, the movement of agents can be sepa-
rated from that of their mailboxes by determining au-
tonomously whether each mailbox is migrated to its
owner agent. However, uncertainty of message deliv-
ery to mailboxes may result in useless early pollings.
On the other hand, even if urgent messages are for-
warded to a mailbox on time, they can be delivered
to its corresponding agent very late depending on the

Proceedings of the 6th WSEAS Int. Conference on TELECOMMUNICATIONS and INFORMATICS, Dallas, Texas, USA, March 22-24, 2007 60

agent’s polling time. Moreover, whenever each mail-
box moves, its new location information should be
broadcasted to every node where the mailbox has vis-
ited. This may incur high traffic overhead if assuming
most agents are highly mobile.

All the works stated above doesn’t consider fail-
ures of forwarding nodes for mobile agents.

4 The Proposed Mechanism

4.1 Directory Service
First of all, let us define two important terms,
forwarding node andlocator. Forwarding node of
an agent is a directory service node that maintains
a forwarding pointer of the agent on its storage.
Thus, there may be the various number of forwarding
nodes of each agent in the system according to which
agent communication mechanism is used. Locator
of an agent is a special forwarding node managing
the identifier of the service node that the agent
is currently running on. Assuming every node is
failure-free, our mechanism requires only one locator
for each mobile agent to address agent mobility. But,
if the mechanism intends to tolerate up toF (F ≥ 1)
node failures,(F + 1) locaters of each mobile agent
should exist. Thus, every service nodeNi needs
to keep the following data structures to enable our
fault-tolerant directory service algorithm to satisfy
the goal mentioned in the previous section.

•R-Agentsi: It is a vector which records the location
information of every agent currently executing on
Ni. Its element consists of three fields,agent id,
l fwdrs andagent t. l fwdrs is a set of identifiers
of agent agent id’s forwarding nodes whichNi

guesses are alive.agent t is the timestamp associated
with agentagent id when the agent is running onNi.
Its value is incremented by one whenever the agent
moves to a new node. Thus, when agentagent id
migrates toNi, Ni should inform only locators of the
agent inl fwdrs of both its identifier andagent t so
that the locaters can locate the agent.
• AgentFPsi: It is a vector which maintains the
location information of every mobile agent which
is not currently running onNi, but which Ni is a
forwarding node of. Its element consists of five
fields, agent id, next n, agent t, manage f and
migrate f . next n is a set of identifier(s) of the
node(s) whichNi thinks agentagent id is currently
running on or are the locators of the agent.agent t is
the timestamp associated with the agent when being
located at the latest among the node(s). It is used
for avoiding updating recent location information by
older information[9].manage f is a bit flag indicat-

ing if Ni is a locator of agentagent id or not. In the
first case, its value is set totrue and otherwise,false.
migrate f is a bit flag designating if the agent is cur-
rently moving to another node(=true) or not(=false).

Then, we assume that the value ofF is 1 in all
examples shown later for explaining. First, let us see
how to perform failure-free operations of the algo-
rithm using figure 1. This figure illustrates basic agent
migration procedures in order and their correspond-
ing state changes in mobile agent location informa-
tion maintained by each node when agenta moves
from N4 to N6 via N5 in case no node fails. In fig-
ure 1(a), agenta was running onN4 and its loca-
tors wereNhome andN1 before its migration proce-
dure initiated. On attempting to move toN5, agent
a first should send its two locators each a message
migr init(Ida), which indicatesa’s migration proce-
dure starts from now. IfNhome andN1 receive this
message, they change the value of fieldmigrate f of
a’s record in theirAgentFPss from false to true,
and then acknowledge the message toN4. This inval-
idation procedure must be executed to prohibit wrong
message forwarding from being performed during the
agent migration operation. Otherwise, the following
problem might occur. IfNhome or N1 receives any
message destined toa, it forwards the message toN4

as it cannot recognize whether the migration proce-
dure fora is currently being executed. Unfortunately,
in this case,a may be gone fromN4 while N4 isn’t
a forwarding node and so has no location information
of a in AgentFPs4 in our algorithm. If so, agent
a cannot receive the message. Therefore, after hav-
ing completed the invalidation procedure,N4 should
push agenta to N5 and then remove the element ofa
fromR-Agents4. Then, agenta incrementsa’s times-
tamp, whose value becomes 5. In this case, it hasN5

become the latest locator ofa, creates and insertsa’s
record intoR-Agents5, and changes the value of field
l fwdrs of the record from{1} to {5,1}. Afterwards,
N5 transmits two different messages to its previous
locators,Nhome andN1, respectively. First, it sends
Nhome a messagechangelm(Ida,{5,1},5) to inform
Nhome thatNhome is a’s locator no longer andN1 and
N5 become two locators ofa from now. Thus,Nhome

updates the values of fieldsnext n and agent t of
a’s record inAgentFPshome to {5,1} and 5 using
the message, and resets both fields,manage f and
migrate f , tofalse. Second, asN1 still continues to
play the role ofa’s locator, agenta sends a message
update(Ida,5) to N1. When receiving the message,
N1 updates the state ofa’s record inAgentFPs1 to
(Ida, {5}, 5, true, false) using the message. Finally,
in both cases, if the messages destined toa have been
buffered in their message queues during the agent mi-

Proceedings of the 6th WSEAS Int. Conference on TELECOMMUNICATIONS and INFORMATICS, Dallas, Texas, USA, March 22-24, 2007 61

(Before migration)

N
1

3. update(Id
a
, 6)

N
5
 N
6

2. migrate(
a
)

N
Home

1.
migr
_init(Id
a
)

(After migration)

R
-
Agents
6

AgentFPs
1

AgentFPs
5

R
-
Agents
5

AgentFPs
1
 true
5
{5}
Id
a
 false
true
5
{5}
Id
a
 false
 true
6
{6}
Id
a
 false
true
6
{6}
Id
a
 false

true
6
{6}
Id
a
 false
true
6
{6}
Id
a
 false

(b) In case of agent
a
moving from
N
5
 to
N
6

{5,1}
Id
a
 5
{5,1}
Id
a
 5
 {5,1}
Id
a
 6
{5,1}
Id
a
 6

(Before migration)

{1}
Id
a
 4
{1}
Id
a
 4
R
-
Agents
4

AgentFPs
Home
 true
4
{4}
Id
a
 false
true
4
{4}
Id
a
 false

N
1

3. update(Id
a
, 5)

N
4
 N
5

2. migrate(
a
)

N
Home

1.
migr
_init(Id
a
)

4.
changelm
(
Id
a
, {
5,1},5
)

AgentFPs
1
 true
4
{4}
Id
a
 false
true
4
{4}
Id
a
 false

(After migration)

{5,1}
Id
a
 5
{5,1}
Id
a
 5
R
-
Agents
5

AgentFPs
Home
 false
5
{5,1}
Id
a
 false
false
5
{5,1}
Id
a
 false

AgentFPs
1
 true
5
{5}
Id
a
 false
true
5
{5}
Id
a
 false

(a) In case of agent
a
moving from
N
4
 to
N
5

Figure 1: In case agenta moves fromN4 to N6 on its
movement path without any node failures

gration, the messages are forwarded toN5.
Figure 1(b) shows an example thata attempts to

migrate from the latest locatorN5 to N6 after a has
finished its partial task atN5. In this case, the inval-
idation procedure is first executed like in figure 1(a).
Then, asN5 is a’s locator, it creates and insertsa’s
record (Ida, {6}, 5, true, true) into AgentFPs5 and
then dispatchs agenta to N6. After that, N6 incre-
mentsa’s timestamp and then savesa’s record (Ida,
{5,1}, 6) into R-Agents5 like in the right-hand side
of this figure becausea wantsN6 to be just a visit-
ing node. Then,N6 sends a messageupdate(Ida,6)
to a’s locators,N1 and N5 to notify them thata’s
agent migration procedure has terminated. After up-
datinga’s location information, the locators forward
each all the messages in their message buffers, which
should be sent to the agent, toN6. Next, we attempt
to informally describe our fault-tolerant directory ser-
vice algorithm in case some nodes fail using figure 2.
This figure shows an example that an FNN5 crashes
while agenta migrates fromN7 to N8. In figure 2(a),
N5 has failed beforeN7 informs two locators ofa,
N5 andN1, thata attempts to move toN8 by send-
ing messagemigr init(Ida) to them. In this case,
to keep the number ofa’s locators beingF+1, N7

sends messagemigr init(Ida) to Nhome, which is
currently a forwarding node ofa, not its locator, to
allow Nhome to play a role ofa’s locator from now.
On receiving the message,Nhome changes the values
of two fieldsmanage f andmigrate f of a’s record
in AgentFPshome to true andfalse. Then, it sends
an acknowledgement message toN7. After finishing
all the invalidation procedures,N7 enables agenta
to migrate toN8, and thenN8 sends each a message

update(Ida,8) toa’s current locators,N1 andNhome,
to inform them of the termination ofa’s agent migra-
tion procedure. In this case, the two locators update
the state ofa’s record in theirAgentFPss to (Ida,
{8}, 8, true, false) respectively.

Figure 2(b) indicates an example thatN5 has
failed after agenta migrates toN8 and beforeN8

sends messageupdate(Ida,8) to the current locators
of a, N5 andN1, for notifying them of the comple-
tion of a’s movement process. In this case,N8 sends
messageupdate(Ida,8) to Nhome to force the num-
ber of a’s locators to be stillF+1. When it receives
the message,Nhome has the state ofa’s record in
AgentFPshome become (Ida, {8}, 8, true, false)
and then plays a role ofa’s locator from now on.

(Before migration)

N

5

4. update(Id

a

, 8)

N

7

N

8

3. migrate(
a
)

N

1

1.
migr
_init(Id
a
)

(After migration)

R
-
Agents
8

AgentFPs

1

AgentFPs
Home

R
-
Agents

7

AgentFPs

1

AgentFPs
 5

N

Home

2.
migr
_init(Id
a
)

true
7
{7}
Id

a

false
true
7
{7}
Id

a

false

true
7
{7}
Id
a
 false
true
7
{7}
Id
a
 false

true
8
{8}
Id

a

false
true
8
{8}
Id

a

false

true
8
{8}
Id
a
 false
true
8
{8}
Id
a
 false
AgentFPs
Home
 false
5
{5,1}
Id

a

false
false
5
{5,1}
Id

a

false

{5,1}
Id
a
 7
{5,1}
Id
a
 7
 {1}
Id
a
 8
{1}
Id
a
 8

(a
)
In case of
 N
5
 failing before initiating the migration procedure of agent
 a

Fail

(Before migration)

N

5

3. update(Id

a

, 8)

N

7

N

8

2. migrate(
a
)

N

1

1.
migr
_init(Id
a
)

(After migration)

Fail
N

Home

4. update(Id
a
, 8)

R
-
Agents

8

AgentFPs

1

AgentFPs
Home

R
-
Agents
7

AgentFPs
 1

AgentFPs

5

true
7
{7}
Id

a

false
true
7
{7}
Id

a

false

true
7
{7}
Id
a
 false
true
7
{7}
Id
a
 false

true
8
{8}
Id

a

false
true
8
{8}
Id

a

false

true
8
{8}
Id
a
 false
true
8
{8}
Id
a
 false
AgentFPs

Home
 false
5
{5,1}
Id
a
 false
false
5
{5,1}
Id
a
 false

{5,1}
Id
a
 7
{5,1}
Id
a
 7
 {1}
Id

a

8
{1}
Id

a

8

(b
)
In case of
N

5

failing after initiating and before finishing the migration pro
 cedure of agent
a

Figure 2: In case an FNN5 fails whilea moving from
N7 to N8

4.2 Message Delivery
To support reliable message delivery despite for-
warding node failures, our mechanism requires the
following agent location cache of every nodeNi.

• L-Cachei: It is a vector which temporarily keeps
location information of each mobile agent which
agents running onNi communicate with. Its ele-
ment consists of three fields,agent id, fwdrs and
agent t. fwdrs is a set of identifiers of the nodes
which Ni guesses are locators of agentagent id.
Thus, to send messages to agentagent id, an agent
onNi forwards them to the latest among live locaters
in fwdrs. If there is no live locater infwdrs,
the messages are sent to the home node of agent

Proceedings of the 6th WSEAS Int. Conference on TELECOMMUNICATIONS and INFORMATICS, Dallas, Texas, USA, March 22-24, 2007 62

agent id. agent t is the timestamp assigned to agent
agent id when the agent registered with the latest
among all locators infwdrs.

To illustrate how our message delivery algorithm
based on the fault-tolerant directory service achieves
the goal, figure 3 shows an example that agentb sends
two messages,m1 andm2, to agenta in this order
while a is moving fromN7 to N9 according to its
itinerary. In figure 3(a), agentb at Nsender attempts
to deliver a messagem1 to agenta with no node fail-
ure aftera has migrated fromN7 to N8. In this case,
asNsender maintain no location information fora in
its agent location cacheL-Cachesender, it creates and
insertsa’s element (Ida, {}, 0) into L-Cachesender.
After that, it sends the messagem1 to Nhome. On
receiving the message,Nhome retrievesa’s element
from AgentFPshome. In this case, as the value of
the bit flagmanage f in the element isfalse, Nhome

isn’t a’s locator. Thus, it consults the element and
forwards the messagem1 to the next forwarderN5

thatNhome guesses agenta is currently running on or
that is the latest locator ofa. On the receipt of the
message,N5 obtainsa’s element fromAgentFPs5

and then checks the flagmanage f in the element.
In this case,N5 is a’s locator because the value of
the flag istrue. Also, as the value of the second
flagmigrate f is false, it directly forwards the mes-
sage toa’s currently running nodeN8 by consulting
the element. After receiving the message,N8 sends
Nsender a messageupdateLocs(Ida, {5,1}, 8) con-
taining the identifiers ofa’s current locators(=N5,N1)
and timestamp(=8) becauseNsender doesn’t correctly
know which nodes area’s current locators. Receiv-
ing the message,Nsender updatesa’s element inL-
Cachesender using the message like in this figure.
Thus, when agentb communicates with agenta from
now, Nsender can directly send messages to the lat-
est locator ofa, N5, with the assumption ofN5 never
failing.

Unlike figure 3(a), figure 3(b) shows the case that
the latest locator ofa, N5, fails aftera has moved
from N7 to N8. In this case,Nsender creates and
keepsa’s element onL-Cachesender, and then for-
wards the messagem1 to Nhome. Then,Nhome at-
tempts to transmit the messagem1 to the first latest
locator N5 by consultinga’s element. However, as
N5 has failed,Nhome cannot receive any acknowledg-
ment message fromN5. Thus, Nhome chooses the
second latest locator ofa, N1, as the next forwarding
node and sends the messagem1 to N1. On receiving
the message,N1 findsa’s element fromAgentFPs1

and then is able to know it is the locator ofa. Thus, it
sends the message toN8 wherea is currently running
by looking up the second field of the element. When

receiving the message,N8 delivers it to agenta. Si-
multaneously, asN8 becomes aware ofN5’s failure, it
forcesNhome to play a role ofa’s locator by sending
messageupdate(Ida,8) to Nhome like in figure 2(b).
In this case,Nhome changes the state ofa’s record in
AgentFPshome to (Ida, {8}, 8, true, false) like in
figure 3(b). Then,N8 updates the second field ofa’s
element inR-Agents8 from {5,1} to {1} and then in-
forms Nsender of this update by sending a message
updateLocs(Ida, {1}, 8). Receiving the message,
Nsender updatesa’s element inL-Cachesender using
the message like in this figure.

Figure 3(c) illustrates a different failure case that
a’s latest locator,N5, crashes aftera has migrated to
N9 from figure 3(a). In this case,Nsender first finds
a’s element (Ida, {5,1}, 8) fromL-Cachesender, and
then attempts to transmit the second messagem2 to
the latest locatorN5. But, Nsender recognizesN5’s
failure because of receiving no acknowledgment mes-
sage from it. Thus,Nhome forwards messagem2 to
the second latest locator ofa, N1, by looking upa’s
element inL-Cachesender. On receiving the mes-
sage,N1 consults the second field ofa’s element in
AgentFPs1 and then sends the messagem2 to a’s
currently running service node,N9. After having re-
ceived the message,N9 can recognizeN5 has crashed.
Thus, it allowsNhome to be a locator fora by send-
ing messageupdate(Ida,9) in the same manner as in
figure 3(b). In this case, values of all the fields of
a’s element inAgentFPshome becomes (Ida, {9}, 9,
true, false) like in figure 3(c). Then,N9 changes the
state of the corresponding element inR-Agents9 to
(Ida, {1}, 9) and sends a messageupdateLocs(Ida,
{1}, 9) toNsender.

5 Conclusion

In this paper, we presented a new fault-tolerant
and scalable mobile agent communication mechanism
based on forwarding pointers to address both agent
mobility and directory service node failures. The
mechanism enables each mobile agent to keep its for-
warding pointer only on the small number of its visit-
ing nodes in an autonomous manner. This feature can
significantly shorten the path for routing each mes-
sage to the corresponding mobile agent. Thus, the av-
erage message delivery time is much more reduced.
Also, our mechanism requires a very small size of
storage per each directory service node compared with
the previous ones because the amount of agent lo-
cation information the node keeps significantly de-
creases in the mechanism. Moreover, the mechanism
allowsF + 1 locators of each agent to know its cur-
rent location for tolerating a maximum ofF failures

Proceedings of the 6th WSEAS Int. Conference on TELECOMMUNICATIONS and INFORMATICS, Dallas, Texas, USA, March 22-24, 2007 63

N
1
 N
7
N
5
 N
8

2.
m1

N
sender

3.
m1

6.
updateLocs
(Id

a

, {5,1}, 8)

(a)
In case
b
sends message
m

1

to
a
 with
no node failure after
 a
has moved from N

7

to N

8

N
Home

R
-
Agents
8

AgentFPs
 1
 true
8
{8}
Id
a
 false
true
8
{8}
Id
a
 false

AgentFPs
Home
 false
5
{5,1}
Id
a
 false
false
5
{5,1}
Id
a
 false

4.
m1

1. migrate

{5,1}
Id

a

8
{5,1}
Id

a

8

L
-
Cache
sender
 {}
Id
a
 0
{}
Id
a
 0

{5,1}
Id
a
 8
{5,1}
Id
a
 8

AgentFPs
 5
 true
8
{8}
Id
a
 false
true
8
{8}
Id
a
 false

N

1

N

7

N

5

N

8

2.
m1

N
sender

3.
m1

6.
updateLocs
(Id
a
, {1}, 8)

N

Home

4.
m1

R
-
Agents

8

AgentFPs
1
 true
8
{8}
Id
a
 false
true
8
{8}
Id
a
 false

AgentFPs
Home

true
8
{8}
Id

a

false
true
8
{8}
Id

a

false

5.
m1

1. migrate

{1}
Id

a

8
{1}
Id

a

8

L
-
Cache

sender

{}
Id

a

0
{}
Id

a

0

{1}
Id

a

8
{1}
Id

a

8

(b)
In case
b
sends message
m
1
 to
a
on
node
N
5
 failing after
 a
 has moved from N
 7
 to N
8

Fail

false
5
{5,1}
Id

a

false
false
5
{5,1}
Id

a

false

N1
 N
5

1. migrate

N
8

3.
m2

N
sender

2.
m2

4.
m2

5.
updateLocs
(Id
a
, {1}, 9)

N
9

L
-
Cache
sender
 {5,1}
Id
a
 8
{5,1}
Id
a
 8

{1}
Id
a
 9
{1}
Id
a
 9

R
-
Agents
9

AgentFPs
1
 true
9
{9}
Id
a
 false
true
9
{9}
Id
a
 false

{1}
Id
a
 9
{1}
Id
a
 9

N
Home
 Fail

AgentFPs
Home

true
9
{9}
Id
a
 false
true
9
{9}
Id
a
 false

false
5
{5,1}
Id
a
 false
false
5
{5,1}
Id
a
 false

(c
)
In case
b
sends message
m
2
 to
a
when node N
5
 fails after
a
having migrated to N
9
from (a)

Figure 3: An example agentb at Nsender sends two
messagesm1 and thenm2 to agenta

of forwarding nodes. This behavior enables the inher-
ent scalability of the proposed mechanism to be rea-
sonably preserved. Also, our effective agent location
cache much more speeds up the delivery of each mes-
sage to the final destination even in case of node fail-
ures.

Choosing the proper forwarding nodes of each
mobile agent among its visiting nodes and the optimal
degree of redundancy of forwarding pointers is very
important for our mechanism to work effectively. For
this, we are currently implementing the mechanism in
a lightweight mobile agent platform and will perform
various experiments to evaluate its scalability with re-
spect to the two performance factors.

References:

[1] P. Bellavista, A. Corradi and C. Stefanelli. The
Ubiquitous Provisioning of Internet Services to
Portable Devices.IEEE Pervasive Computing,
Vol. 1, No. 3, pp. 81-87, 2002.

[2] W. Belle, K. Verelst and T. D’Hondt. Loca-
tion transparent routing in mobile agent systems

merging name lookups with routing.In Proc. of
the 7th IEEE Workshop on Future Trends of Dis-
tributed Computing Systems, pp. 207-212, 1999.

[3] J. Cao, X. Feng, J. Lu and S. Das. Mailbox-
based scheme for mobile agent communications.
IEEE Computer, Vol. 35, No. 9, pp. 54-60, 2002.

[4] T. D. Chandra and S. Toueg. Unreliable failure
detectors for reliable distributed systems.Jour-
nal of ACM, 43:225-267, 1996.

[5] J. Desbiens, M. Lavoie and F. Renaud. Commu-
nication and tracking infrastructure of a mobile
agent system.In Proc. of the 31st Hawaii Inter-
national Conference on System Sciences, Vol 7.,
pp. 54-63, 1998.

[6] M. J. Fischer, N. A. Lynch and M. S. Paterson.
Impossibility of distributed consensus with one
faulty process. Journal of ACM, 32:374-382,
1985.

[7] M. Fukuda, Y. Tanaka, N. Suzuki, L.F. Bic and
S. Kobayashi. A Mobile-Agent-Based PC Grid.
In Proc. of the Fifth Annual International Work-
shop on Active Middleware Services, pp. 142-
150, 2003.

[8] D. Lange and M. Oshima.Programming and
Deploying Mobile Agents with Aglets. Addison-
Wesley, 1998.

[9] L. Moreau. Distributed Directory Service and
Message Router for Mobile Agents.Science of
Computer Programming, Vol. 39, No. 2-3, pp.
249-272, 2001.

[10] L. Moreau. A Fault-Tolerant Directory Service
for Mobile Agents based on Forwarding Point-
ers. In Proc. of The 17th ACM Symposium on
Applied Computing, pp. 93-100, 2002.

[11] A. L. Murphy and G. P. Picco. Reliable Com-
munication for Highly Mobile Agents.Journal
of Autonomous Agents and Multi-Agent Systems,
Vol. 5, No. 1, pp. 81-100, 2002.

[12] ObjectSpace. Voyager.
http://www.objectspace.com/.

[13] R. D. Schlichting and F. B. Schneider. Fail-
stop processors: an approach to designing fault-
tolerant distributed computing systems.ACM
Transactions on Computer Systems, 1:222-238,
1985.

Proceedings of the 6th WSEAS Int. Conference on TELECOMMUNICATIONS and INFORMATICS, Dallas, Texas, USA, March 22-24, 2007 64

