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Abstract: The stability property in a game problem of the approach of a conflict-controlled system to a target set at
a fixed terminal moment is investigated. The notion of a stability defect is introduced for sets in the space of game
positions.
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1 Introduction

A conflict-controlled system on a finite time interval is
studied. Issues related to the stability property, which
is one of the central notions in the theory of posi-
tional differential games, are investigated. In the end
of the 1960s (see [1-4]), the stability property was in-
troduced and used as the basis for the notion of stable
bridge and extremal shift to the stable bridge. In the
first publications, the stability property was defined in
terms of controls of antagonistic players.

In the following decades, there has been an evo-
lution in the description of this property.

In [5–8] stability is represented as the property of
the weak invariance of a set in the position space with
respect to a family of differential inclusions related to
the dynamics of a conflict-controlled system. These
differential inclusions contain the control vector of the
second player as a parameter.

In the first half of the 1970s, stability-based con-
structions were used for studying new problems, in
particular, the game problem of pursuit–evasion with
functional target set [9], as well as the guaranteed con-
trol problem with incomplete information about the
state of a controlled object [10, 11].

In the middle of the 1970s, a new definition of
stability emerged and gradually a new direction based
on this definition was formed, namely, unification of
differential games. In Krasovskii’s papers [12, 13], a
definition of unification models was given, their prop-
erties were studied, and possibilities of their applica-
tion in various dynamics game problems were spec-
ified. The essence of unification is that the stability
property is formulated in terms of vectors of conjugate
variables and the Hamiltonian of a conflict-controlled
system. Under unification, the structure of a conflict-

controlled system—its right-hand side—becomes in-
significant, and the system’s Hamiltonian acquires im-
portance. From the viewpoint of the following years,
it becomes clear that one of the most important fea-
tures of unification is that the stability property is ex-
pressed in the form that conforms to constructions of
nonsmooth and convex analysis. Unification is also
important for comparing conflict-controlled systems.
For example, the fact that two systems with identical
Hamiltonians are equivalent with respect to the solu-
tion of a differential game becomes absolutely clear.
Some aspects of unification are also considered in [14,
15].

In the second half of the 1970s and in the begin-
ning of the 1980s, investigations related to construct-
ing stable bridges in game problems were conducted
in several directions. In [16–18] the programmed it-
eration method for calculating the game value func-
tion and stable bridges in differential games was sug-
gested. Methods and algorithms for approximate cal-
culation of stable bridges were actively developed
[19–21]; for this purpose, it was very important to
choose a suitable representation for the stability prop-
erty, which made the computations much easier.

The next stage concerning the representation of
the stability property dates back to the beginning of
the 1980s. By this time, several concrete differen-
tial games had been considered, in which the stabil-
ity property assumed formulations not conforming to
traditional schemes. The stability property for these
games could be expressed by means of only a finite
number of differential inclusions.

Thus, by the beginning of the 1980s, there had
been several representations for describing the stabil-
ity property, which is very important in differential
games. Though these representations have different
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forms, they single out the same bridges, and therefore
they are equivalent in essence.

In the first half of the 1980s, a rather general for-
mulation of the stability property emerged [22, 23]. It
absorbed some of the known formulations, including
those which did not comply with traditional schemes.
In this formulation, just as in the unification scheme
[12, 13], the Hamiltonian of a conflict-controlled sys-
tem is present explicitly.

Then, in the middle of the 1980s, an infinitesimal
representation of the stability property was obtained
[24]. This representation was expressed in terms of
Bouligand cones or right derivatives of a correspond-
ing set. As Subbotin [25] has shown, this representa-
tion is useful not only when considering theoretical is-
sues of differential games, but also for developing the
theory of generalized (minimax and viscosity) solu-
tions of Hamilton–Jacobi equations. Infinitesimal so-
lutions related to Bouligand cones were later applied
for studying more general first-order partial differen-
tial equations [26].

In the present paper we show that it is convenient
to use constructions involved in the infinitesimal
representation of the stability property to broaden the
notion of stability. This leads to the expansion of the
sphere of applicability of the extremal shift method.

2 Statement of the Conflict Control
Problem

Let the behavior of a conflict-controlled system on the
interval [t0, ϑ], t0 < ϑ < ∞, be described by the
system

ẋ = f(t, x, u, v), x(t0) = x0, u ∈ P, v ∈ Q. (1)

Here, x ∈ Rm is the phase vector of the system, u and
v are controls of the first and second players, and P
and Q are compact sets in the spaces Rp and Rq, re-
spectively. The symbol Rn denotes the n-dimensional
Euclidean space.

Assume that the following conditions are satis-
fied:

A. The vector function f(t, x, u, v) is defined and
continuous in variables (t, x, u, v) on [t0, ϑ] × Rm ×
P × Q, and for any compact set D ⊂ [t0, ϑ] × Rm

there exists L = L(D) ∈ (0,∞) such that

‖f(t, x(1), u, v) − f(t, x(2), u, v)‖ ≤
L‖x(1) − x(2)‖ (2)

for all (t, x(i), u, v) ∈ D × P × Q, i = 1, 2.

B. There exists μ ∈ (0,∞) such that
‖f(t, x, u, v)‖ ≤ μ(1 + ‖x‖) for all (t, x, u, v) ∈
[t0, ϑ] × Rm × P × Q.

Here ‖f‖ is the norm of a vector f in the corre-
sponding Euclidean space.

The differential game under consideration is an-
tagonistic and consists of two problems—an approach
problem and an evasion problem [8]. In the approach
problem facing the first player, it is required to se-
cure that the motion x(t), t ∈ [t0, ϑ], of system (1)
gets at the moment ϑ to a given compact set M in
Rm, whichever admissible control the second player
selects. It is required to solve the problem in the class
of positional procedures of control with a guide of the
first player [8].

The evasion problem facing the second player
consists in securing that the motion x(t), t ∈ [t0, ϑ],
of system (1) at the moment ϑ evades some closed
ε neighborhood Mε of the compact set M for all
admissible controls of the second player. It is re-
quired to solve the problem in the class of counter-
positional procedures of control with a guide of the
second player [8].

The following alternative [8] holds for the formu-
lated problem: there exists a closed set W 0 ⊂ [t0, ϑ]×
Rm (the maximal u-stable bridge) such that for all
initial positions (t∗, x∗) ∈ W 0 the approach prob-
lem is solvable and for all initial positions (t∗, x∗) ∈
([t0, ϑ] × Rm) \ W 0 the evasion problem is solvable.

According to the extremal shift principle [8], the
resolving control procedure of the first player can be
implemented for initial positions (t∗, x∗) ∈ W 0 as a
positional control procedure with a guide, which aims
the motion x(t) of controlled system (1) at the motion
of a guide through the bridge W 0. As is known, the
main difficulty of the approach problem falls at find-
ing the bridge W 0 in the position space (t∗, x∗) of the
differential game.

The problem of finding W 0 in the position space
is one of the most difficult problems in constructing
solutions of a differential game. The definition of
the bridge W 0 is not an immediate recipe for finding
it. In order to calculate W 0, one needs its analytical
description, which, however, is possible only in rare
cases. Therefore, it is important to develop methods
and algorithms for the approximate construction of the
bridge W 0. Such algorithms have been developed for
some classes of problems [20, 21, 23].

As a result of approximate construction, we ob-
tain not the bridge W 0, but some other set in [t0, ϑ]×
Rm, which we denote by W0. The set W0 satis-
fies the boundary condition W0(ϑ) = M , where
W0(t) = {x ∈ Rm : (t, x) ∈ W0}.

Generally speaking, for positions (t∗, x∗) ∈ W0,
not the initial problem of approaching M , but the less
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stringent problem of approaching some ε neighbor-
hood Mε of the set M is solvable. In this case, to
construct the first player’s control guaranteeing that
the motion x(t) of system (1) gets to Mε, we use a
positional procedure aiming the motion x(t) at some
broken line going through W0 and hitting the set
W0(ϑ) = M at the final moment ϑ. This broken line
can be interpreted as a guide’s motion.

In the following sections of this work, we con-
sider a bounded closed set W ∗ from [t0, ϑ] × Rm,
W ∗(ϑ) = M , assuming that it satisfies some con-
ditions (see Section 4). For W ∗ and the positions
(t∗, x∗) ∈ W ∗, we define a control procedure simi-
lar to the above-mentioned procedure for the set W0.
This procedure is in essence a procedure of control
with a guide, and we call it for short a W ∗ control
procedure of the first player. In Section 5 we neatly
estimate the ε neighborhood of the set M to which
all motions x(t) from points (t∗, x∗) ∈ W ∗ can be
brought by means of the W ∗ control procedure.

3 Stability of Sets in the Space of
Game Positions

The maximal stable bridge W 0 consists of all
(t∗, x∗) ∈ [t0, ϑ]×Rm from which the approach prob-
lem is solvable. Using this fact and Condition B, we
can choose in [t0, ϑ] × Rm a sufficiently large closed
domain D containing the bridge W 0 and all the mo-
tions from a sufficiently small neighborhood of W 0.

However, in the subsequent sections we will con-
sider sets W ∗ ⊂ [t0, ϑ]×Rm, which are not necessar-
ily stable bridges and which may differ substantially
from W 0, so the above-mentioned choice of the do-
main D is insufficient for us.

Let us consider a compact set W ∗ ⊂ [t0, ϑ]×Rm,
W ∗(ϑ) ⊂ M , whose properties will be detailed later,
and refine the choice of the domain D.

Denote by h(W2, W1) the Hausdorff deviation of
the set W2 from W1, where W1 and W2 are from Rm.

Let a number ε∗ > 0 satisfy the following in-
equalities:

ε∗ > sup
t∈[t0,ϑ]

h (W ∗(t), {0}) ,

ε∗ > ρ∗ + μ(ϑ − t0)eμ(ϑ−t0)

.
Here 0 is the zero in Rm, {0} is the set consisting of
the zero, ρ∗ = h(M, {0}).

Then the cylinder

Z = {(t, x) : t ∈ [t0, ϑ], ‖x‖ ≤ ε∗}

in [t0, ϑ] × Rm contains both W ∗ and W 0.

The cylinder Z is contained in the bounded closed
domain

D = {(t, x) : t ∈ [t0, ϑ], ‖x‖ ≤ (ε∗+μ(t−t0))eμ(t−t0)}

from [t0, ϑ] × Rm.
The domain D is an integral funnel on [t0, ϑ] of

the differential equation

ẋ ∈ U(x) = {f ∈ Rm : ‖f‖ ≤ μ(1 + ‖x‖)}

with the initial set

D(t0) = {x0 ∈ Rm : ‖x0‖ ≤ ε∗}.

Let G be the largest of balls U(x), (t, x) ∈ D,
and let ρ be its radius.

We have the inclusion

F (t, x) ⊂ U(x), (t, x) ∈ [t0, ϑ] × Rm,

and, therefore, all solutions of the differential inclu-
sion

ẋ ∈ F (t, x), (t∗, x(t∗)) = (t∗, x∗) ∈ Z

satisfy the inclusion F (t, x) ⊂ G, (t, x) ∈ D.
Assume

Πl(t, x) = {f ∈ Rm : 〈l, f〉 ≤ H(t, x, l)},

Fl(t, x) = F (t, x)
⋂

Πl(t, x),

(t, x, l) ∈ D × S, S = {l ∈ Rm : ‖l‖ = 1}.
We have the inclusion

Fl(t, x) ⊂ G, (t, x, l) ∈ D × S.

Now we formulate the definitions of a stable
bridge W and a maximal stable bridge W 0 in terms
of a family L = {(t, x) 	→ Fl(t, x), l ∈ S} of map-
pings (t, x) 	→ Fl(t, x), (t, x) ∈ D, corresponding
to the vectors l ∈ S.

These definitions are preceded by the definition
of a stable absorption operator.

Namely, denote by Xl(t∗; t∗, x∗) the set of all
x∗ ∈ Rm satisfying the equality x(t∗) = x∗, where
x(·) = {x(t) : t∗ ≤ t ≤ t∗} is a solution of the
differential inclusion

ẋ ∈ Fl(t, x), x(t∗) = x∗, t ∈ [t∗, t∗];

X−1
l (t∗; t∗, X∗) = {x∗ ∈ Rm : Xl(t∗; t∗, x∗)

⋂
X∗ �= ∅},

X∗ is a set from Rm.

Proceedings of the 11th WSEAS International Conference on APPLIED MATHEMATICS, Dallas, Texas, USA, March 22-24, 2007         88



Definition 1 The stable absorption operator π in the
approach problem is the mapping (t∗; t∗, X∗) 	→ 2Rm

given by

π(t∗; t∗, X∗) =
⋂
l∈S

X−1
l (t∗; t∗, X∗),

(t∗, t∗, X∗) ∈ Δ × 2Rm
.

Here, Δ = {(t∗, t∗) : t0 ≤ t∗ < t∗ ≤ ϑ}.

Definition 2 A closed set W ⊂ D is a u-stable bridge
if

W (ϑ) ⊂ M ;

W (t∗) ⊂ π(t∗; t∗, W (t∗)), (t∗, t∗) ∈ Δ.

Let W 0 be the union of all u-stable bridges W ⊂
D. Then W 0 is the maximal (with respect to in-
clusion) u-stable bridge and is the positional absorp-
tion set in the approach problem under consideration
(see [8]).

Recall also the infinitesimal formulation of the
stability property expressed in terms of the family L
(see [24]). Let us present this formulation in the form
of a theorem.

Theorem 3 A nonempty closed set W ⊂ D is a u-
stable bridge if and only if
(1) W (ϑ) ⊂ M ;
(2) −→DW (t, x)

⋂
Fl(t, x) �= ∅, t ∈ [t0, ϑ),

(t, x, l) ∈ W × S.
Here,

−→
DW (t, x) = {d ∈ Rm : d =

lim
k→∞

wk − x

tk − t
, (tk, wk) ∈ W (k = 1, 2) . . . ; tk ↓

t as k → ∞, lim
k→∞

(tk, wk) = (t, x)}.

It is evident that for the bridge W 0 Condition (1)
of Theorem 1 takes the form W 0(ϑ) = M . In addi-
tion, the bridge W 0 possesses the T property: from
t0 ≤ t∗ < t∗ ≤ ϑ and W 0(t∗) �= φ it follows that
W 0(t∗) �= φ. The T property of the bridge W 0 can
be characterized as the continuity property of W 0 as
the time t grows on [t0, ϑ].

Further, we have

Xl(t∗; t∗, x∗)
⋂

W 0(t∗) �= φ, (t∗, x∗, l) ∈ W 0 × S,

and, therefore, taking into account Xl(t∗; t∗, x∗) ⊂
O(t∗−t∗)ρ(x∗), we obtain

W 0(t∗)
⋂

O(t∗−t∗)ρ(x∗) �= φ, (t∗, x∗) ∈ W 0.

Here, O(t∗−t∗)ρ(x∗) = {w ∈ Rm : ‖w − x∗‖ ≤
ρ(t∗ − t∗)}.

Hence,
−→
DW 0(t∗, x∗)

⋂
G �= φ

for all (t∗, x∗) ∈ W 0, t∗ ∈ [t0, ϑ).

4 The Stability Defect of Sets in the
Position Space of the Game

In this section we define the stability defect of a set
contained in D.

Assume that the set W ∗ ⊂ D from Section 3 sat-
isfies the condition W ∗(ϑ) = M and possesses the T
property.

Moreover, as a way of strengthening the T
property of the set W ∗, we assume that the following
condition is valid:

C. W ∗(t∗)
⋂

O(t∗−t∗)ρ(x∗) �= ∅, (t∗, x∗) ∈ W ∗,
t0 ≤ t∗ < t∗ ≤ ϑ.

Remark 4 Condition C means that the multivalued
mapping t 	→ W ∗(t), t ∈ [t0, ϑ] changes (in some
sense) not very fast at the points (t∗, x∗) ∈ W ∗, t∗ ∈
[t0, ϑ), as t grows.

It follows from Condition C that
−→
DW ∗(t∗, x∗)

⋂
G �= ∅, (t∗, x∗) ∈ ∂W ∗, t∗ ∈ [t0, ϑ);

here, ∂W ∗ is the boundary of the set W ∗ in [t0, ϑ] ×
Rm.

Let us assign to each point (t∗, x∗) ∈ ∂W ∗, t∗ ∈
[t0, ϑ), the number

ε(t∗, x∗) = sup
l∈S

ρ
(−→
DW ∗(t∗, x∗), Fl(t∗, x∗)

)
≥ 0.

Here we denote

ρ(D∗, F ∗) = inf
(d,f)∈D∗×F ∗

‖d − f‖,

where D∗ and F ∗ are sets from Rm.
We call the value ε(t∗, x∗) the stability defect of

the set W ∗ at the point (t∗, x∗) ∈ ∂W ∗, t∗ ∈ [t0, ϑ).

Remark 5 Under some mild conditions on sys-
tem (1), the supremum in the expression for ε(t∗, x∗)
is attained at all points (t∗, x∗) ∈ ∂W ∗, t∗ ∈ [t0, ϑ).
One of such conditions is, for example, the condition

H∗(t∗, x∗, l) < H(t∗, x∗, l) < H∗(t∗, x∗, l),

(t∗, x∗) ∈ ∂W ∗, t∗ ∈ [t0, ϑ), l ∈ S;
here, H∗(t∗, x∗, l) = ming∈F (t∗,x∗)〈l, g〉,
H∗(t∗, x∗, l) = maxg∈F (t∗,x∗)〈l, g〉.

Proceedings of the 11th WSEAS International Conference on APPLIED MATHEMATICS, Dallas, Texas, USA, March 22-24, 2007         89



For subsequent considerations, it is convenient
to replace the set

−→
DW ∗(t∗, x∗) from the expression

for ε(t∗, x∗) by a smaller compact set; here the value
ε(t∗, x∗) is retained.

Consider the set

−→
D

∇
W ∗(t∗, x∗) = −→

DW ∗(t∗, x∗)
⋂

3G,

where 3G = {3g : g ∈ G}.
Since

−→
DW ∗(t∗, x∗)

⋂
G �= ∅, Fl(t∗, x∗) ⊂ G

for (t∗, x∗) ∈ ∂W ∗, t∗ ∈ [t0, ϑ), l ∈ S, we have

ρ(−→D∇
W ∗(t∗, x∗), Fl(t∗, x∗))

= ρ(−→DW ∗(t∗, x∗), Fl(t∗, x∗))

for (t∗, x∗) ∈ ∂W ∗, t∗ ∈ [t0, ϑ), l ∈ S.
Hence we have the following representation:

ε(t∗, x∗) = supl∈S ρ
(−→
D

∇
W ∗(t∗, x∗), Fl(t∗, x∗)

)
,

(t∗, x∗) ∈ ∂W ∗, t∗ ∈ [t0, ϑ).

Assume for t∗ ∈ [t0, ϑ)

ε(t∗) = sup
(t∗,x∗)∈Λ(t∗)

ε(t∗, x∗),

where Λ(t∗) = ∂W ∗ ⋂
Γt∗ , Γt∗ = {(t, x) : t = t∗}.

Let us call the value ε(t∗) the stability defect of
the set W ∗ at the moment t∗ ∈ [t0, ϑ). At the same
time, we have a nonnegative function ε(t) on [t0, ϑ),
which can be interpreted as a characteristic of the in-
stability extent of the set W ∗.

If W ∗ is a u-stable bridge, then by Theorem 1 we
have −→

DW ∗(t∗, x∗)
⋂

Fl(t∗, x∗) �= φ,

(t∗, x∗) ∈ ∂W ∗, t∗ ∈ [t0, ϑ), l ∈ S; therefore,

−→
D

∇
W ∗(t∗, x∗)

⋂
Fl(t∗, x∗) �= φ,

(t∗, x∗) ∈ ∂W ∗, t∗ ∈ [t0, ϑ), l ∈ S.
Hence, ε(t∗, x∗) = 0, (t∗, x∗) ∈ ∂W ∗, t∗ ∈

[t0, ϑ), and then ε(t) = 0 on [t0, ϑ).
Further, from the equality ε(t) = 0 on [t0, ϑ), we

obtain

−→
D

∇
W ∗(t∗, x∗)

⋂
Fl(t∗, x∗) �= φ,

(t∗, x∗) ∈ ∂W ∗, l ∈ S, t∗ ∈ [t0, ϑ), i.e., W ∗ is a
u-stable bridge.

We have shown that the stability of the set W ∗
is equivalent to the equality ε(t) = 0 on [t0, ϑ).
Hence, in the case ε(t) = 0 on [t0, ϑ), the rule of
extremal shift to a guide moving through W ∗ guaran-
tees that the motion x(t) of system (1) gets to M if
(t∗, x(t∗)) = (t∗, x∗) ∈ W ∗.

This suggests that if the function ε(t) correspond-
ing to the set W ∗ is small on [t0, ϑ), then the rule of
the extremal aiming at a guide moving through W ∗
guarantees that the motion x(t) of system (1) gets to
a small ε neighborhood of the set M at the moment
ϑ. In addition, it is intuitively obvious that ε can be

expressed by means of the integral
∫ ϑ

t0
ε(t)dt (if this

function is integrable on [t0, ϑ]).
In order to validate these assertions, we impose

additional restrictions on W ∗ and ε(t), [t0, ϑ):
D. There exists a scalar function ϕ∗(δ) ↓ 0 as

δ ↓ 0 such that

h(x∗ + δ
−→
D

∇
W ∗(t∗, x∗), W ∗(t∗ + δ)) ≤ δϕ∗(δ)

for t∗ ∈ [t0, ϑ), (t∗, x∗) ∈ ∂W ∗, δ ∈ (0, ϑ − t∗).
E. The function ε(t) is Riemann integrable on

[t0, ϑ].
Here we denote x∗+δX∗ = {x∗+δf : f ∈ X∗},

where X∗ is a set from Rm.
In publications [1–8], the positional control of the

first player is described based on the rule of the ex-
tremal shift of the motion x(t) of system (1) to the
u–stable bridge W . The same rule can be applied
when instead of the u–stable bridge we have the set
W ∗. The positional strategy U l(t, x) of the first player
based on the rule of extremal shift to W ∗ will be called
for short the W ∗–strategy of the first player. The fol-
lowing statement is true:

Theorem 6 The motion x(t) (x(t∗) = x∗ ∈ W ∗(t∗))
on [t∗, ϑ], generated by W ∗-strategy of the first player
satisfies the inclusion

x(ϑ) ∈ Mε,

where ε = εW ∗ = eL(ϑ−t0)
ϑ∫

t0

ε(τ)dτ.
(3)

The number ε = εW ∗ (3) can be considered as a
measure of instability of the set W ∗. It is natural to
call it a stability defect of the set W ∗.
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