
Using Genetic Algorithms in Software Optimization

ION IVAN, CATALIN BOJA, MARIUS VOCHIN, IULIAN NITESCU, CRISTIAN TOMA, MARIUS
POPA

Economic Informatics Department
Academy of Economic Studies

Romana Square No. 6, Bucharest
ROMANIA

Abstract: Concepts of informatics application and software optimization are defined. Presented are criteria and
graphical methods for optimization. As far as multi-criteria optimization for very complex software applications is
concerned, genetic algorithms are proposed. Their effects are compared with classic algorithm effects for the same lot
of applications.

Key-Words: optimization, software, genetic algorithms, compiler

1. Software applications

Software applications represent complex structures
designed to solve precisely defined problems. The
software application implies a software component for
processing, input and output data which is the result of
processing. It is a triple defined by input data, software
and results. It is considered that the software
application exists if and only if for complete and
correct input data, after the processing stage complete
and correct results are obtained which fully satisfy the
user’s requirements.
With an increase in program complexity different
management strategies are implemented. These
administrate the product’s quality or the quantity of
resources needed. The management strategies are also
involved in the lifecycle stages of the final product and
are confronted with a large number of primary factors
and aggregated factors, whose levels have to be noted.
The situation imposes the software product to be
modularized into a number of different specialized
components. This presents the following advantages:
 reusability of the modules, including them in other

products;
 a better administration of the analysis, development

and implementation phases;
 a clearer view of the functional components;
 specialization of the analysts, designers and

programmers.
There are numerous criteria for classifying software
applications. Based on the structure criteria, software
applications are:
 software applications with a linear structure;
 software applications with a tree structure;

 software applications with a network structure.
Based on the type of application:
 applications; these implement data processing

operations and contain functions from various
socio-economical fields;

 multimedia; these give the necessary support for
processing video and audio files;

 operating systems; these administrate the
computers’ hardware resources and permit access to
them for software applications;

 games; represent applications designed for
entertainment or user education;

 utilities and instruments; are used for administering
and protecting different functions of the operating
system or other software applications.

The society based upon knowledge is characterized by
using software applications included in architectures
of large applicability.

2. Optimum criteria

Software quality is a complex concept used to describe
a software product judged by the economic-technical
characteristics. On the basis of these characteristics a
software application can be identified as being better
or worse than another one from the same category.
The process of quality analysis is based on a complex
system of quality characteristics. The quality factors
taken into account are:
 efficiency through the reduction time and resources;
 functionality through correctness, security,

compatibility, completeness and interoperability;
 maintainability which permits correcting

deficiencies and future development of the product;

Proceedings of the 6th WSEAS Int. Conference on TELECOMMUNICATIONS and INFORMATICS, Dallas, Texas, USA, March 22-24, 2007 36

 portability which ensures independence from
hardware, independence from software platforms
and reusing the application in different software
products;

 robustness through tolerance to errors and through
the extent to which the product is operational during
hardware or software failure.

 usability which describes the effort made by users to
understand the workings of the product.

The optimum criteria are defined on the basis of the
above. The criteria become objectives in the
optimization process because they describe both
quantitatively and qualitatively what is the goal in the
development cycle of the software product.
Minimizing the workload. The workload decisively
influences the processing duration because it is defined
as the number of clock cycles, or the number of
instructions executed. The clock cycle or the executed
instruction is characterized by durations, and an
increased number of clock cycles or executed
instructions lead to an increase in program execution
duration. To optimize a program means to make such a
construction that will lead to getting the final results in
the shortest possible time. Thus, to optimize a program
means to find ways in which to reduce the workload as
much as possible, i.e. to minimize it.
Maximizing precision. Precision is a new concept with
regards to the limitations that are imposed by existing
representations in computers. We work at byte level, at
word level (two bytes), at double word level, at double
precision and with 10 byte memory zones. For every
type a domain and representation are defined as well
as stating the effects different mathematical operations
have with different operands defined by these types,
upon condition indicators. The programmer has to
carry out studies regarding the operands domains to
make sure the results are guaranteed to be correct and
do not generate uncontrolled interrupts in the case of
distributes applications.
Maximizing the dimension of the problem to be solved.
Any problem is characterised by the input data stored
in some data structure, the algorithm steps needed to
be taken to process the data, the final result and
maintenance requirements for the informatics solution
chosen.
Maximizing the dimension of the problem means
creating a software application that includes a
maximised set of functions tied to the objective for
which the software application was developed for. The
criterion sets the degree of generalisation of the
problem by including considered factors of influence,
hypothesis for calculating and methods for solving the
problem. Maximizing the dimension of the problem is
a trend which the programmer has to follow

simultaneously with the duration of solving the
problem the software was written for.
Maximizing the generalisation of the software product.
Any problem put forward for elaborating software
analysis has to be undertaken gradually. A simpler
form is taken, after which further developments
appear. During this time the programmer gains the
necessary experience for correctly approaching the
problem and understanding the efforts needed to move
from a complexity level to a raised level of complexity
for the problem.
If at first, the problem takes on the most complex
form, with the highest degree of generalisation, there
are risks of it not being understood, and the
beneficiaries could wait a long time before the first
correct results come in. Usually the costs of such an
approach are a lot greater than if the problem was
approached in a gradual way, by going through
different stages. This means going from a from that
solves a simpler problem to a program that solves a
more complex problem, therefore building the
program a step at a time.

3. Classical optimizations for software
applications

The evolution of software and hardware technologies
permits for complex software applications in the
present, but also with great requirements for
processing speed and memory usage. Software
applications included in this category are operating
systems, entertainment applications and multimedia
applications.
With all this waste of resources, transparent to the
user, the developer gives particular importance to the
optimization process, looking to maximize the
performance of the final product.
Another category of software products is constrained
from the start to be efficient with respect to the system
resources used. In this category are included antivirus
applications, drivers, viruses, applications
implemented in microcontrollers or smartcards,
function libraries, applications for mobile devices.
The objective of software optimization is to obtain a
new product or a new version of an existing product,
which presents a higher quality level. This grade is
worked out based on the levels obtained from the set
of software characteristics or the established optimum
criteria. These are well defined and are followed
throughout the whole process, directly measuring the
obtained levels. By direct comparison to the base
levels or by determining aggregated values based on
the way multi-criteria models are composed, the level
of improvement is obtained. One such model, [10],

Proceedings of the 6th WSEAS Int. Conference on TELECOMMUNICATIONS and INFORMATICS, Dallas, Texas, USA, March 22-24, 2007 37

permits determining an aggregated quality level which
measures the effects of multi-criteria optimization.
The optimization process implements techniques and
methods used in:
 problem analysis; this implies that a lot of the

problems in software optimization are generated in
stages before the development of the source code;
the implementation of an inefficient analysis leads
to defining a solution that isn’t characterised by a
required quality level;

 source code; if this is based on a bad
implementation of an algorithm, it will lead to
obtaining inefficient results in most situations, even
if the complexity of the source code may be
reduced, or if it is of high quality; the main cause of
problems at source code level lies in a low level of
its experience, and last but not least in the mistakes
it makes; the primary methods, [10], used at this
level are based on the elimination of repeating sub-
expressions, instructions without any meaning,
sequences in which instructions with opposite effect
appear, invariations, by substituting complex
reference expressions with simpler ones and by
regrouping control structures;

 compiler; this component is responsible for
transforming source code in the form associated
with the high level language into machine code; as
this form is directly processed by the
microprocessor, it greatly influences the way in
which resources are used and especially the total
processing time; using a good complier that contains
a lot of techniques for optimizing memory usage
and processing speed leads to optimizing the
application without the need for any other additional
effort; the second solution for getting optimized
machine code is to write the source code in
assembler languages; analysing the efficiency of
using an optimization routine for the compiler or
writing the application in assembler languages leads
to defining two approaches; in the case of routines
with a high level of importance for application
performance, the programmer can generate machine
code more efficiently than the compiler; the solution
of developing the whole application in machine
code is not viable because the effort and time
resources are too great;

4. Genetic algorithms in optimization

Optimizing compiler options represents one of the
areas in which genetic algorithms show their
capability. Genetic algorithms search for solutions to
problems by imitating mechanisms specific to natural
evolution. To find a solution, a population is
constructed, each individual representing a possible

solution to the problem. Transformations inspired
from natural evolution are applied upon the
population: selection, crossover, mutation. In the
evolution process the individuals become more and
more adapted to the environment [4].
The gcc compiler presents hundreds of options: for
code optimization, for pre-processing, for link-editing,
options specific for C++ or C, dependant on the
computer etc. For finding the optimum combination all
the possible combinations have to be tried out, but the
search space is too vast. For determining the optimal
solution in a reasonable time, genetic algorithms are
proposed. The chromosome is an ordered set of
elements, named genes, whose values determine the
characteristics of an individual from the population.
The chromosome is represented by arrays which
contain the coding for a possible solution.
The configuration options are held in a list. The
chromosome is represented like a string of bits. If the
element at position i from the string has value 1, then
the option from position i in the array is used to
compile the program.
If the compiler options array and the chromosome are
set as follows:

Table 1. Compiler options and chromosomes.

Position 1 2 3 4 … n-1 N
Options

-lr
t

-lm

-0
1

-fg
cs

e

…

-fn
o

m
at

h-
er

rn
o

-m
ie

ee
-fp

Chromosome 1 1 1 0 0 0

Then the configuration options are –lrt, -lm and -01.
The value for the fitness function for an individual is
given as the execution time of the program compiled
with the options chosen based on the certain
chromosome.
The initial population is randomly generated, and is
made up of a relatively small number of individuals.
The generated chromosomes have to be checked if
they are valid. Tests have to be made to make sure if
compulsory options have been included and if there
are options that are in conflict with one another.
Chromosome selection for reproduction is done using
the roulette method and the elitist strategy. The
roulette method permits reducing the selection
pressure, maintaining population diversity. The elitist
strategy refers to keeping the best chromosomes, for
which the value of the fitness function is the greatest,
from one generation to the next.

Proceedings of the 6th WSEAS Int. Conference on TELECOMMUNICATIONS and INFORMATICS, Dallas, Texas, USA, March 22-24, 2007 38

When choosing the elitist strategy, it has been taken
into account that from one generation to the other the
performance criterion does not change. The strategy
makes sure that each generation contributes in a
positive manner to the execution speed of the program.
This way the algorithm converges faster to an optimal
solution [7]. The method assures a high rate of
convergence, but to avoid premature convergence the
method has to be used with mechanisms for
maintaining the population diversity.
Crossover with a single cut-off point will be used.
Two parents are chosen (x and y) which generate two
descendants (x’ and y’). A k between 1 and n-1 is
chosen randomly, named a cut-off point, and the
descendants are constructed:

x’=(x1,…,xk,yk+1,….,yn) şi y’=(y1,…yk,xk+1,…,xn) (1)

The mutation assures the alternation of gene values,
making sure population diversity is kept. Mutation
takes place with a very low probability, being a
secondary operator for genetic algorithms. A gene is
chosen randomly and its value is changed.
After applying the crossover and mutation operators
the validity of each chromosome is tested. A
chromosome is invalid if it contains non-permitted
combinations of compiler options or if it doesn’t
contain compulsory options. For verification and
correction correspondence matrixes are used, and the
genes are set accordingly.
If the population is small, the genetic algorithm has a
better execution speed, but searching in the solution
space is inefficient. If the population is large, its
accuracy increases, but the speed decreases. Because if
this, it is advised that it is used together with other
methods. Genetic algorithms generate a small number
of populations, and the best result is used as an entry
point for classical search methods.

Optimizing the distribution of data destined for
network processing uses genetic algorithms because
the volume of data is diverse and its dynamics is
particular. When a distributed database system is
designed, an important requirement is that it uses the
network in an optimal way. Each node has to execute
on average the same number of queries. At the same
time, a query has to access as less nodes as possible.
By equilibrating the two requirements, an optimal
distributes database system is obtained. Genetic
algorithms are used to find the solution.
Consider a table with 16 entries, with two columns:
car name and its colour. The accepted colours are: blue
(A), yellow (G), red (R), green (V). The number of
blue cars is 5, yellow 4, red 3, green 4. This table will

be distributes in a network with 2 nodes. Three
possible configurations are possible:

Table 2. Data distribution in nodes.

Node 1 Node 2
A A A G R R V V A A G G G R V V
A A G G R V V V A A A G G R R V
A G G G R R V V A A A A G R V V

Consider a table with n entries, and network with k
nodes. The chromosome is coded as an array with n
elements, each having a value between 1 and k-1. If
element i from the vector has value x then entry i from
the table is saved in node x. The chromosome has a
length equal to the number of entries.
Chromosome selection for reproduction is done using
the roulette method and the elitist strategy.
The fitness function has to include the following
optimum criteria: grouping of entries with the same
attributes, as well as distributing them in an equal
fashion between a minimum number of nodes.
Grouping entries with the same attributes is done using
the following formula [3]:

2

1 1

),(∑ ∑= = ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

k

i

m

j
in

jiAGI (2)

where:
GI – attribute groping
k – number of distinct attributes
m – number of nodes
A(i,j) – number of attributes i from node j
ni – total number of attributes i

Distribution of entries with the same attributes
between a minimum number of nodes if done using
the following formula:

∑ ∑= =
−=

k

i

m

j
bjiADI

1 1
),((3)

where:
DI – distribution of entries
b – maximum number of entries that can be held
in a node

The fitness function is:

1 ,1,
1

1
<=+

+
+= coefbsicoefacoefbcoefa

DI
coefb

k
GIcoefaF

 (4)

Where coefa, coefb are 2 constants; coefa, coefb are
chosen based on the importance given to each
optimum criterion.

Proceedings of the 6th WSEAS Int. Conference on TELECOMMUNICATIONS and INFORMATICS, Dallas, Texas, USA, March 22-24, 2007 39

The crossover is done through random inheritance
common to both parents.

Table 3. Data distribution in nodes.

Entries 1 2 3 4 5 6 7 8 9 10 11 12
Colours A A R G G R R G A V V R
Parent 1 1 2 1 2 2 4 1 4 2 3 3 1
Parent 2 2 2 1 1 2 3 1 4 2 2 3 1
Child x 2 1 x 2 x 1 4 2 x 3 1

Each node I is allocated a maximum number of 1+
k
n

entries, where n represents the number of entries from
the table and k the number of nodes. Taking into
account the long length of the chromosome, the
completion algorithm has to be as simple as possible
for a fast execution and for reducing memory usage.
The completion algorithm has to group for each node
entries with the same attribute.
For entry 1, node 2 is chosen because this already
contains 2 entries with the same attribute. For entry 4
node 2 or 4 is chosen randomly. The mutation
probability is decided at gene level. A number r is
randomly chosen between 1 and n-1. A gene is chosen
and the mutation operator is applied with a very small
probability. Its value is interchanged with the value
from another gene from the chromosome. The
mutation algorithm is repeated for r genes.

5. Comparative analysis of the effects of genetic
algorithm optimization

Testing the program for optimising compiler options
permits tracking the effects of processes developed
through genetic algorithms. For the testing, 4
programs were written in C++. The programs are
compiled using g++, under OpenSuse 10.2, with the
compiler options offered by the optimizing program.
Settings for the genetic algorithm are: population
number = 60, number of selected individuals = 40,
number of generations = 100, mutation probability =
0.04.
The first program instantiates 400000 object
dynamically allocated, and then immediately disposes
them.

Table 4. The best 3 results from the first program

Compiler options Execution
time (ms)

-O1 -fno-guess-branch-probability -fno-
cprop-registers -fno-thread-jumps -fno-if-
conversion -ftree-ccp -fprefetch-loop-arrays

182

-fpeel-loops -fbranch-target-load-optimize
-lrt -lm -O1 -fno-merge-constants -fno-
cprop-registers -fno-thread-jumps -fno-if-
conversion -fno-loop-optimize -ftree-dce -
ffloat-store -fno-inline -fpeel-loops -
funswitch-loops

216

-std=gnu99 -O1 -fno-cprop-registers -fno-if-
conversion -fno-delayed-branch -fno-loop-
optimize -ftree-ccp -fprefetch-loop-arrays -
fpeel-loops -fbranch-target-load-optimize

275

The second program does the linpack test which
determines the performance of a processor.

Table 5. The best 3 results from the second program

Compiler options Execution
time (ms)

-lm –std=gnu99 -O1 -fno-merge-constants –
fno-defer-pop -fno-cprop-registers -fno-if-
conversion -fno-loop-optimize -ftree-ccp -
funswitch-loops

418

-lm –std=gnu99 -O1 -fno-merge-constants -
fno-defer-pop -fno-thread-jumps -ftree-ccp -
ftree-dce -funswitch-loops

440

-lrt -lm -std=gnu99 -O1 -fno-defer-pop -fno-
cprop-registers -fno-thread-jumps -ftree-dce

788

In figure 1 you can see the dynamics of the network
learning process and its effects upon the results.

Fig. 1 Evolution of the genetic algorithm for the

second program.

The third program multiplies 2500 times two matrixes
of dimension 30x30 dynamically allocated.

Table 6. The best 3 results from the third program

Compiler options Execution

Proceedings of the 6th WSEAS Int. Conference on TELECOMMUNICATIONS and INFORMATICS, Dallas, Texas, USA, March 22-24, 2007 40

time (ms)
-std=gnu99 -O1 -fno-if-conversion -ftree-dce -
ffloat-store

723

-lm -std=gnu99 -O1 -fno-merge-constants -
fno-defer-pop -fno-thread-jumps -fno-if-
conversion -fno-delayed-branch -fno-loop-
optimize -fprefetch-loop-arrays -fpeel-loops -
funswitch-loops -fbranch-target-load-optimize

782

-lm -std=gnu99 -O1 -fno-merge-constants -
fno-cprop-registers -fno-thread-jumps -fno-if-
conversion -fno-delayed-branch -fno-loop-
optimize -ffloat-store -fprefetch-loop-arrays -
fpeel-loops -funswitch-loops -fbranch-target-
load-optimize

835

It is observed that genetic algorithms determine
combinations of parameters which lead to amelioration
of program behaviour obtained after compilation.

6. Conclusions

Important progress in the computing field, data
transmissions and multimedia permit, in the present,
development of software applications with a high
degree of complexity, which need increasingly more
memory and processing speed. For this reason, lots of
importance is given to the process of optimization.
Genetic algorithms use principles from natural
genetics. These are used in solving certain difficult
problems for which there are no known efficient
algorithms.
In the future there would be use of parallel genetic
algorithms for development of distributed applications.
Each application from the network executes a normal
genetic algorithm, and after a number of generations,
these communicate and interchange genetic material.
In the end all the nodes will transmit the best
chromosome found to a central node. At the same
time, for raising the performance, genetic algorithms
have to be combined with other classical searching
algorithms. A special role resides with the
development of genetic algorithms that have to
optimize the behaviour of non-homogenous
architectures of software systems for which all other
operating methods at source code sequence level,
product structure level and resulting behaviours from
compilation and link-editing have been exhausted.

References

[1] T. BÄCK - Evolutionary Algorithms în Theory and
Practice: Evolution Strategies, Evolutionary

Programming, Genetic Algorithms. Editura Oxford
University Press, New York, 1996
[2] Cătălin BOJA – Software Multicriterial
Optimization, The Proceedings of the Seventh
International Conference of Informatics in Economy,
May 2005, Academy of Economic Studies, Bucharest,
Romania, Inforec Printing House, pp. 1068 – 1074,
ISBN 973-8360-04-8.
[3] W CEDEÑO, V. VEMURI - Database design with
genetic algorithms, Evolutionary Algorithms in
Engineering Applications, Springer Verlag, 1997.
[4] L.D. DAVIS - Handbook of Genetic Algorithms,
Van Nostrand Reinhold, New York, 1991
[5] Randy HAUPT, Sue Ellen HAUPT - Practical
Genetic Algorithms, JOHN WILEY & SONS, New
Jersey, 2004
[6] H.J. HOLLAND - Adaptation în Natural and
Artificial Systems, University of Michigan Press, 1975
[7] G. GREENWOOD, Q. ZHU - Convergence in
evolutionary programs with self-adaptation,
Evolutionary Computation, pp. 147-158, 2001.
[8] Ion IVAN, Cătălin BOJA – Empirical Software
Optimization, Economic Informatics, vol. IX, nr.
2/2005, Inforec Printing House, Bucharest, 2005,
ISSN 1453 – 1305, pp 43 – 50.
[9] Daniel Rivero, Julian Dorado, Juan Rabunal,
Alejandro Pazos – Using Genetic Programming for
Artificial Neural Network Development and
Simplification, Proceedings of the 5th WSEAS Int.
Conf. on COMPUTATIONAL INTELLIGENCE,
MAN-MACHINE SYSTEMS AND CYBERNETICS,
Venice, Italy, November 20-22, 2006, ISSN 1790 –
5095, ISSN 1790 – 5117, ISBN 960-8457-56-4
[10] Ion IVAN, Cătălin BOJA – Optimization of
software applications, ASE Printing House, 2007.
[11] Ion IVAN, Cătălin BOJA – Empirical Software
Optimization, Economic Informatics Journal, vol. IX,
no. 2/2005, Inforec, Bucharest, 2005, ISSN 1453 –
1305, pp 43 – 50.
[12] Mitchell Melanie – An Introduction to Genetic
Algorithms, MIT Press, Massachusetts, 1999
[13] M. Holena, U. Rodemerck, T. Cukic, D. Linke, U.
Dingerdissen – Automatically Generated Problem-
Tailored Genetic Algorithms for the Optimization of
Chemical Processes, Proceedings of the 6th WSEAS
International Conference on Applied Computer
Science, Tenerife, Canary Islands, Spain, December
16-18, 2006, ISSN 1790 – 5095, ISSN 1790 – 5117.
[14] Marius Liviu VOCHIN – Data compression
software based on genetic algorithms, in Romanian,
bachelor paper, Academy of Economic Studies, 2006

Proceedings of the 6th WSEAS Int. Conference on TELECOMMUNICATIONS and INFORMATICS, Dallas, Texas, USA, March 22-24, 2007 41

