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Abstract—This paper considers the design of a robust 
quantizer for the class of input signal distributions having given 
quantiles and otherwise arbitrary shape.  The quantizer model 
that consists of a compander and a uniform quantizer is utilized.  
The case of large number of quantization points is considered, 
and we use Bennett’s and Gersho’s approximation to the mean 
rth power distortion measure.  We demonstrate that the 
piecewise linear compander provides robust quantization for the 
class of all input probability distributions having only their 
quantiles specified.  The optimum robust solution is provided 
through the determination of all the required parameters.  The 
problem is resolved for the case of block quantizers as well, and 
we show that the robust solution corresponds to a piecewise 
constant output point density function. The least favorable input 
multivariable density function is the piecewise uniform one. 

I. INTRODUCTION 

The design of quantizers has received much attention in 
the engineering literature [1, 2].  The majority of the work 
done on the subject of quantizer design deals with the case of 
perfectly known probability distribution function of the 
quantized signal.  In reality, one has only partial knowledge of 
the distribution, and the quantizer must be designed for a class 
of distributions. It is desirable to design a quantizer that will 
minimize the average distortion for the worst case distribution 
of the specified class [3, 4]. Such a quantizer if it exists, is 
termed robust [1, 2]. In this paper we consider the case of 
large number of quantization levels, and we use the 
companding approximation to the average distortion due to 
Bennett [5].  We also utilize the quantizer model of Bennett 
[5], in which a Compressor is connected in series to a uniform 
quantizer and an expander, which is called the “companding” 
model. The idea of using Bennett’s companding 
approximation for robust design of one dimensional 
quantizers originated in [3]. Also the problem of mismatch 
between the actual input statistics and the statistics assumed 
for the design of one dimensional quantizer have been studied 
in [7], [8].   

We consider the class of signal probability distributions 
that have fixed quantiles.  For this class, we seek the 
compander function that minimizes the maximum average 
distortion and maximizes the minimum average distortion.  
We show that the solution consists of a piecewise linear 
compander of an explicit form.  Thus, we establish a 
robustness property for piecewise linear companders, which 
have been analyzed and designed by Dobrogowski [6].  In 
section III we develop a robust solution for the case of vector 
quantization and the rth power distortion measure.  As 

performance criterion we utilize Gersho’s formula for the rth 
power distortion, and the class of input signal distributions is 
characterized again in terms of fixed quantiles.  It is shown 
that a robust quantizer exists, corresponding to a piecewise 
linear output point distribution. 

II. PROBLEM STATEMENT AND SOLUTION FOR ONE DIMENSION 

A quantizer is modeled as a compressor G with 
characteristic G(x), followed by a uniform N level quantizer 
on [a, b] and an expander G-1 at the output of the uniform 
quantizer.  The expander is the inverse function of the 
compressor.  It is assumed that G(x) is a monotone increasing 
function, and its derivative is denoted by g(x).  The input 
signal x has a distribution F(x) and density function f(x), with 
support on [a, b].  Our partial knowledge of f(x) is 
characterized by the fact that only a number of quantiles of 
f(x) are known. 
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As performance measure of the quantizer we will use 
Bennett’s [5] approximate expression for the mean square 
distortion for very large number N of quantizer output levels: 
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where QN(x) is a quantizer mapping.  
The function g(x) is also the asymptotic output level density, 
i.e.: [9],                  

g(x) =
N

)x(Nlim
N ∞→

0)x(g,1dx)x(g
b

a

>=∫

 

where N(x)dx is the number of quantization levels in the 
interval [x, x+dx].  Hence, we have the conditions: 
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The problems now are: 
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under the conditions that g(x) > 0, and .  In 

general, we have: 
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which means that the order of minimizing and maximizing is 
essential to the result.  If (4) is an equality, then we say that a 
saddle point or robust solution exists. 
 Assuming g(x)>0 on [a, b], and using Hölder’s inequality, 
[8], we find: 
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where: 
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with equality if and only if: 
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We now observe from (2), (6) that the solution of problems 
(A), (B) can be achieved in two steps.  We fix at first the set 
of constants 

  }1M,...,1k);x(G{G k

_

−==

and we find the constrained minimum over .  At the 

second step, we optimize by varying the M-1 parameters .  
The constrained minimization of D(f, g) is achieved by the M 
independent constrained minimizations of {D
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and the minimizing g is given by (7).  If we apply Hölder’s 
inequality again, we find: 
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Due to , we have to find the extremum.  Thus, the 
maximum is achieved for  

_
Ggε

k
1

k1k d)xx(Const)x(g ⋅−== −
+  

and we find: 
)g,f(Dinfsup)xx(dq)g,f(Dsupinf k

gHf

2
k1k

2
kkk

Hfg GG εεεε
=−⋅= +

− (11) 

Summing (11) for k=0,1,…M-1 we find: 
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where f* is the uniform density and g* is the robust 
compander with piecewise constant slope. 

As a final step, we will minimize (12) over the choice 

of the set .  This amounts to minimizing (12) over d
_

G 0…dM-1, 
under the constraints  
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For this step, we use a single Lagrange multiplier z, and the 
problem is: 
 Minimize over d0, … dM-1, the quantity 

J=  ∑
−

−
+

=
+−

1M

0k
k

2
k

2
k1kk zd2d)xx(q

Setting the partial derivative of J with respect to dk equal to 
zero, we find: 
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III. MULTIDIMENSIONAL QUANTIZERS 

In this section we generalize the previous results in two 
directions.  We consider the rth power distortion measure and 
block quantization.  Let x = (x1….xk) be a k-dimensional 
random vector with density f(x), with support on a k-
dimensional bounded region V.  An N-point block quantizer is 
a function y = Q(x);  which maps VV → Vxε  into one of N 
output vectors {y1...yn}cV.  The points {yj} and a partition of 

N disjoint sets Sj, such that , specify the quantizer 

Q.  Thus:
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block quantizer can be modeled by a block compressor 
followed by a uniform block quantizer and then a block 
expander.  The block compressor is a nonlinear continuous 
mapping from V into itself, and the block expander is the 
exact inverse function of the compressor.  The design of the 
compressor characteristic is, for large N, equivalent to the 
choice of the probability density function of the quantizer 
output y.  This is because for large N the uniform quantizer 
approaches the behavior of an identity operator.   
 Let g(y), Vyε  denote the output point density function, 
which is to be chosen optimally.  We measure the 
performance of such a quantizer by the distortion: 

            (15) r1 ||)x(Qx||Ek −⋅=Δ −
Δ

where r  and 0≥ |||| ⋅  denotes the usual l2 norm.  For r = 2, Δ  
is the mean square “per letter” distortion measure.  Gersho [1] 
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has developed heuristically the following approximate 
expression for large N, 
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where m = 1kr −⋅ , and C(k, r) is called “coefficient of 
quantization.”  Some values of C(k, r) are tabulated or 
bounded in [1].  The output point density function satisfies the 
constraints: 
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and are ready to pursue the robust design of g(x).  Define the 
family of densities with known quantiles: 
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We also define by vk the volume of Vk, and we assume that all 
vk 0. ≠
 Define, now, the partial distortions: 
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Using Hölder’s inequality, and in a manner analogous to the 
derivation of (5), (6), we have the inequality: 
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and we have shown that the piecewise constant f* is the least 
favorable input density, and the piecewise constant g* is the 
minimax design solution, under the game constraints 

Hfε ¸ : 
_

Ggε

∑
=

−===
M

1k

m
k

m
kk

GgHf
k

HfGg
dvq)g,f(Dinfsup*)g*,f(D)g,f(Dsupinf

εεεε
 (32) 

As a final step, we minimize D(f*, g*) over the positive 

parameters {d1…dM}, under the constraint .  This 

last optimization in effect removes the constraint , by 
scanning the whole parameter space through a variation of the 
parameters d
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1…dM.  The minimization is performed using a 
Lagrange multiplier z.  The problem now is: 
 Minimize over d1….dM the quantity 

k

M

1k

m
k

m
kk mzddvqJ +⋅= ∑

=

−  

Setting the partial derivative of J with respect to dk equal to 
zero, we find: 
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Summing (33) over k, and using the previous constraint we 
find z: 
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In conclusion, the robust design of the quantizer amounts to a 
piecewise constant output density g(y), having the form: 
  M,...1k,Vyfor  vd)y(g k
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with given by eq. (34).  The least favorable input density 
function is the piecewise uniform one of the class H.  Hence, 
the robust compander is the one that transforms f* into g*, and 
therefore is piecewise linear. 

*
kd

IV. FINAL COMMENTS 
 We have developed a solution to the design of robust 
quantizers for the class of input signal distributions with 
known quantiles and arbitrary shape.  The case of large 
number of quantization points was considered, and use of the 
Bennett-Gersho distortion approximation was made.  The 
robust solution amounted to a piecewise constant output point 
density function, for the general block quantization and rth 
power distortion measure.  Thus, the corresponding robust 
compander is piecewise linear, which makes it very easy to 
implement and of practical utility.   The results of the 
present paper are limited to high quality quantization, which 
amounts to low distortion and large number of output 
quantization levels.    
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