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Abstract: Rothschild-Stein division method [21] translated by Léandre in probability [9] is reinterpreted in the
framework of the Malliavin Calculus without probability in order to recover the results that Léandre [9,12] has
obtained by the Malliavin Calculus.
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1 Introduction

The inhomogeneous division method is a very old
method for studying subelliptic heat-kernels. For in-
stance Rothschild and Stein used inhomogeneous di-
lation in order to study the behaviour of heat-kernels
associated to degenerated Laplacians on nilpotent Lie
groups. Stanton-Tartakoff [24] used this method to
study precise estimates on the diagonal for the heat-
equation associated to the ∂b-Laplacian in complex
geometry. Léandre has translated this method in prob-
ability in [9]: He considers the asymptotic expansion
of a diffusion and introduces some inhomogeneous
rescaling in order to study the leading term in the
asymptotic expansion of the density of a diffusion, by
using the Malliavin Calculus as a tool. Let us remark
that Bismut pointed out in [4] that it is not enough to
only consider the first fluctuation of a degenerated dif-
fusion for studying the asymptotic in small time of a
degenerated diffusion.

We have translated in [15,16,17,18] the Malliavin
Calculus of Bismut type in semigroup theory in or-
der to get rough-estimates of some degenerated heat-
kernels. Our goal in this paper is to translate in semi-
group theory our note [9]. Let us recall the state-
ment: On Rd, we consider some vector fields Xi,
i = 0, ..,m with bounded derivatives at each order.
We suppose that ( Hypothesis H) the Lie brackets of
length smaller than 2 of the Xi’s, i > 0, span in x0 the

whole space Rd. We consider the operator

L = X0 + 1/2
∑
i>0

X2
i (1)

The semigroup spanned by L has got in x0 a heat-
kernel pt(x0, y) [19]. For studying precise asymptotic
of heat-kernels, it is standard to introduce the bichar-
acteristics associated to this problem. In our situation,
they are the solution starting from (x0, p0) of

dxt(x0, p0) =∑
i>0

< pt, Xi(xt(x0, p0)) > Xi(xt(x0, p0))dt (2)

and of

dpt = −
∑
i>0

< pt, Xi(xt(x0, p0)) >

t ∂

∂x
Xi(xt(x0, p0))ptdt (3)

The introduction of bicharacteristics for subelliptic es-
timates is due to Gaveau [3]. We refer to [4] for an
introduction to Sub-Riemannian geometry. We can
study as it was done for instance by Bismut in [2] the
horizontal flow Ψt(x0, p0)(z) associated to the equa-
tion starting from z

dzt =
∑
i>0

Xi(zt)hi(x0, p0)(t)dt (4)
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where hi(x0, p0)(t) =< pt, Xi(xt(x0, p0)) >. z →
Ψs(x0, p0)(z) is a diffeomorphism on Rd. We set

S(x1(x0, p0)) =
∑
i>0

∫ 1

0
h2

i (x0, p0)(t)dt (5)

We introduce the following matrix [2]:

C =
∑
i>0

∫ 1

0
< Ψ∗−1

t (x0, p0)Xi(x0), . >2 dt (6)

We denote by n(x0, p0) the dimension of its image
plus twice the dimension of its kernel. We remark that
this quantity decreases when we travel along a small
bicharacteristic.

The goal of this note is to provide another proof of
the following result by Léandre [9,12] (who was using
the Malliavin Calculus) by instead using the Malliavin
Calculus of Bismut type without probability of [15].

Theorem 1 If p0 is small enough, we have when t →
0

pt(x0, x1(x0, p0)) = t−n(x0,p0)/2

exp[−S(x1(x0, p0))/2t](c(x1(x0, p0)) + o(1)) (7)

For developments of the division method by
the Malliavin Calculus, we refer to the surveys by
Léandre [10,11,13,14], Kusuoka [8] and Watanabe
[24], and to the book by Baudoin [1]. For the study
of heat-kernels by using probabilistic tools, we refer
to the book by Kolokoltsov [6]. For analytical meth-
ods for the asymptotics on subelliptic heat-kernels, we
refer to [5,7,23].

2 Proof of the theorem
In order to estimate the heat-kernel pt(x, y) associated
to the generator L, we have only to estimate the heat-
kernel at time 1 pε(x, y) associated to the semigroup
P ε

s with generator ε2X0 + 1/2ε2
∑

i>0 X2
i where we

have put ε2 = t. We consider the time dependent gen-
erator

Ls = ε2X0+

1/2ε2
∑
i>0

X2
i +

∑
i>0

hi(x0, p0)(s)Xi (8)

We consider the generator L̃s on Rd+1

ε2X0 + 1/2
∑
i>0

X̃i
2
+

∑
i>0

hi(xo, p0)(s)Xi (9)

where if i > 0 X̃i = (εXi,−hi(x0, p0)(s)).

This generator spans a semigroup P̃ ε
s such that by

[16]

P ε
1 [f ](x0) = exp[−S(x1(x0, p0))/2t]

P̃ ε
1 [exp[u/ε]f ](x0, 0) (10)

We have applied for that the Cameron-Martin-
Maruyama-Girsanov formula in semigroup theory of
[15]. We use the Itô-Stratonovitch formula of Bismut
in semigroup theory of [16]. Let us consider the vec-
tor fields

X
s
i = (εΨ(x0.p0)∗−1

s Xi,−hi(x0, p0)(s)) (11)

if i > 0 and for i = 0

X
s
0 = Ψ(x0, p0)∗−1

s X0 (12)

and the time dependent generator

L
ε
s = ε2X

s
0 + 1/2

∑
i>0

(Xs
i )

2 (13)

which spans an inhomogeneous semigroup P
ε
s. As in

[16], in order to estimate pt(x0, x1(x0, p0)), we have
only to estimate the density at 0 of the measure on Rd

f → P
ε
1[exp[u/ε]f(y)](0, 0) (14)

The main remark in the sequel is that

hi(x0, p0)(s) =< p0,Ψ(x0, p0)∗−1
s Xi(x0) > (15)

Therefore if we replace in L
ε
s in X

s
i for i > 0

hi(x0, p0)(s) by Ψ(x0, p0)∗−1
s Xi(x0), we consider a

semigroup on R2d instead of Rd+1 and we have to es-
timate the density at 0 of the measure

f → P
ε
1[exp[< p0, εu− y > /ε2]f(y)](0, 0) (16)

where we have kept the same notations for the ex-
tended semigroup.

Lemma 2 There exists a r small enough such that if
|p0| < r

sup
ε≤1

P
ε
1[exp[2 < p0, εu− y > /ε2]](0, 0),∞ (17)

Proof: In order to simplify the exposition, we ignore
the drift X

s
0. By proceeding as in [15], we have that

| ∂

∂s
P

ε
s[exp[C < p0, εu− y >]](0, 0)| ≤

C2ε2P
ε
s[exp[C < p0, εu− y >]](0, 0) (18)
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such that by the Gronwall lemma for s ≤ 1

P
ε
s[exp[C < p0, εu− y >]](0, 0)

≤ K exp[KC2ε2s] (19)

such that

P
ε
s[|εu− y| > M ](0, 0) ≤ K exp[−KM2/(ε2s)]

(20)
The same inequality holds for εu and y considered
separately such that

P
ε
s[| < p0, u > | > M ](0.0) ≤ K exp[−KM2/s]

(21)
and

P
ε
s[| < p0, y > | > M ] ≤ K exp[−KM2/(ε2s)]

(22)
The lemma will be proved if we can show that:

P
ε
s[| < p0, εu− y > | > M ]

≤ K exp[−KM/ε2] (23)

For that let us introduce as in [17] the Wong-Zakai
approximation of the semigroup P

ε
s. Let be a sub-

division of [0, 1] with smesh η. In order to simplify
the exposition, we will suppose that the considered
vector fields do not depend on the time s. Let wi be
a centered Gaussian variable on Rm with covariance
ηId. Let us introduce the ordinary random differential
equation:

dxε,η
s (y, u) =

∑
i>0

Xi(xε,η
s (y, u))wids (24)

starting from (y, u). We put

W.Nη,εf(y, u) = E[f(xε,η
1 (y, u))] (25)

We iterate this kernel k-times and we get a kernel
W.Nk

η,ε. An elementary finite-dimensional computa-
tion shows that

|∆W.Nk
η,ε[exp[C < p0, εu− y >]](0.0)| ≤

ηC2ε2W.Nk
η,ε[exp[C < p0, εu− y >](0, 0) (26)

provided that Cη1/2ε remains bounded. We choose a
smesh η = Kε2 exp[−K1M/ε2]. A discrete analogue
of the Gronwall lemma shows that W.Nk

η.ε satisfies to
similar inequalities as (19), (20), (21) and (22) uni-
formly for k ≤ η−1: these 3 last inequalities are ob-
tained by taking C = C1M/ε2.

Let Cη be the set of paths from the lattice into
R2d. We deduce a probability law Wη,ε on it. As usual
y∗kη denotes supk′≤k |yk′η|.

Moreover, if f is continuous and bounded, we de-
duce from [16] that

W.Nk
η,ε[f ](0, 0) → P

ε
kη[f ](0, 0) (27)

uniformly for k ≤ η−1. We regularize the indicatrix
function of the cube [−M,M ]2d. So if the smesh of
the subdivision is in ε2 exp[−K1M/ε2], it is enough
for showing (23) that

W.Nk
η,ε[| < p0, εu− y > | > M ](0, 0)

≤ K exp[−KM/ε2] (28)

if K1 is small enough uniformly for k ≤ η−1 and in ε.
We distinguish two cases: y∗kη smaller/greater

than KM1/2. We consider the function

gk = Wη,ε[exp[C < p0, εukη − ykη >]

; y∗kη < KM1/2] (29)

We see that

|∆gk| ≤ KMC2ε2ηgk (30)

for M1/2Cεη1/2 bounded. We deduce by a discrete
Gronwall lemma that

Wη,ε[exp[C < p0, εu1 − y1 >]; y∗1 ≤ kM1/2]

≤ K exp[KMC2ε2] (31)

provided that M1/2Cεη1/2 is bounded. Since η =
Kε2 exp[−k1M/ε2], we can take in (31) C = C1ε

−2

and deduce that

Wη,ε[| < p0, εu1 − y1 > | > M ; y∗1 < KM1/2]

≤ K exp[−KM/ε2] (32)

if M < 1. If M ≥ 1, we have the same inequality by
the analogue of (20). On the other hand, if K1 is small
enough, we get

Wη,ε[y∗1 ≥ KM1/2] ≤ K exp[−KM/ε2] (33)

In order to show (33), we use the Kolmogorov
lemma ([20]). Let Xs be a process s ∈ [0, 1] on a
probability space such that X0 = 1 and

E[|Xs −Xs′ |p]1/p ≤ Cp|s− s′|α (34)

for p large enough. Then Xs has a modification which
is Hölder and X∗

1 belongs to some Lr with an Lr-
norm which can be estimated in terms of the Cp.

We apply this to the measure Wη,ε and to Xs =
exp[< C, ys >]. Provided that |C|εη1/2 is bounded,
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we find a bound by the considerations which follow
(26) of Cp in exp[K|C|2ε2]. Therefore we get pro-
vided that |C|εη1/2 is bounded that

Wη,ε[exp[< C, y >∗
1]] ≤ exp[KC2ε2] (35)

(33) arises by taking |C| = C1M/ε2 ♦
We put x0 = 0. Let y = y1 + y2 where y1 is the

component of y in the image of the quadratic form C
defined in (6) and y2 its component in the kernel of
this quadratic form. We write y1 = Π1y and y2 =
Π2y2.

We do the change of variable

y → 1/εΠ1y + 1/ε2Π2y (36)

such that the vector fields εΨ(x0, p0)∗−1
s Xi are trans-

formed as

(Π1 + 1/εΠ2)Ψ(x0, p0)∗−1
s Xi(εΠ1y + ε2Π2y) (37)

When ε → 0, these vector fields tend to

Π1Ψ(x0, p0)∗−1
s Xi(0)+

Π2DΨ(x0, p0)∗−1
s Xi(0)Π1y (38)

We consider the generator Rε
s which is got after do-

ing this rescaling and Qε
s the associated semigroup on

functions on R2d.
The main remark is the following: The density at

0 of the measure

f → P
ε
1[exp[< p0, εu− y > /ε2]f(y)](0.0) (39)

is equal to ε−n(x0,p0) times the density at 0 of the mea-
sure

f → Qε
1[exp[< p0, εu− y > /ε2]f(y)](0, 0) (40)

We do now the change of variable

(y, u) → (y,
εu− y

ε2
) (41)

The vector fields in the extra-components are replaced
by

− 1/εΨ(x0, p0)∗−1
s Xi(0)+

1/εΨ(x0, p0)∗−1
s Xi(εΠ1y + ε2Π2y) (42)

which tend to DΨ(x0, p0)∗−1
s Xi(0)Π1(y) when ε →

0. After performing this rescaling we get an extended
generator R̃ε

s with a corresponding extended semi-
group Q̃ε

s. We only have to estimate the density at
0 of the measure when ε → 0:

f → Q̃ε
1[exp[< p0, z >]f(y)](0, 0) (43)

We apply for that the Malliavin Calculus without
probability of Bismut type of Léandre [16] depending
on a parameter.

Lemma 3 the measure

f → Q̃ε
1[exp[< p0, z >]f(y)](0, 0) (44)

has a smooth density in y which depends continuously
on ε belonging to [0, 1].

Proof: We give only the algebraic statement of the
proof. It uses the fact (see Lemma 2) that

sup
0≤ε≤1

Q̃ε
1[exp[2 < p0, z >]](0.0) < ∞ (45)

and the Malliavin matrix associated to the generator in
the first component with the rescaled vector fields has
an inverse bounded in all the Lp, especially for ε = 0,
since the Hörmander’s hypothesis is fulfilled for Lie
brackets of length smaller than 2 (Hypothesis H). The
proof is therefore the same as the one of Theorem III.1
of [16].♦

3 Conclusion
We have translated in semigroup theory the proof of
theorem 1 given by Léandre in [8] by using the Malli-
avin Calculus. The main remark is that in [8] and [9]
only algebraic manipulations on stochastic differen-
tial equations are performed ans they have their coun-
terparts in semigroup theory. The only notion of the
theory of stochastic processes that is used is the ele-
mentary Kolmogorov lemma ([20]).
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[15] R. Léandre: Malliavin Calculus of Bismut type
without probability. To appear Festschrift in
honour of K. Sinha. A.M. Boutet de Monvel edt.
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[18] R. Léandre: Applications of the Malliavin Cal-
culus of Bismut type without probability. In Sim-
ulation, Modelling and Optimization (Lisboa).
A.M. Maduradeira edt. C. D., 2006, pp. 559-564.
WSEAS transactions on mathematics 11, 2006,
pp. 1205–1211.

[19] D. Nualart: The Malliavin Calculus and related
topics, Springer, Heidelberg 1995.

[20] P. Protter: Stochastic integration and differential
equations. A new approach,, Springer, Heidel-
berg, 1995.

[21] L.P. Rothschild, E.M. Stein: Hypoelliptic differ-
ential operators and nilpotent groups. Acta. Math
137, 1976, pp. 2247–370.

[22] N.K. Stanton, D.S. Tartakoff: The heat equation
for the ∂b-Laplacian. Com. Part. Diff. Equations
7, 1985, pp. 597-686.

[23] N. Varopoulos, L. Saloff-Coste, T. Coulhon:
Analysis and geometry on groups, Cambridge
Tracts Maths.100, Cambridge Univ. Press.,
Cambridge 1992.

[24] S. Watanabe: Stochastic analysis and its appli-
cations. Sugaku 5, 1992, pp.51–72.

Proceedings of the 11th WSEAS International Conference on APPLIED MATHEMATICS, Dallas, Texas, USA, March 22-24, 2007         11


