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Abstract: Rothschild-Stein division method [21] translated by Léandre in probability [9] is reinterpreted in the
framework of the Malliavin Calculus without probability in order to recover the results that Léandre [9,12] has

obtained by the Malliavin Calculus.
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1 Introduction

The inhomogeneous division method is a very old
method for studying subelliptic heat-kernels. For in-
stance Rothschild and Stein used inhomogeneous di-
lation in order to study the behaviour of heat-kernels
associated to degenerated Laplacians on nilpotent Lie
groups. Stanton-Tartakoff [24] used this method to
study precise estimates on the diagonal for the heat-
equation associated to the Jj-Laplacian in complex
geometry. Léandre has translated this method in prob-
ability in [9]: He considers the asymptotic expansion
of a diffusion and introduces some inhomogeneous
rescaling in order to study the leading term in the
asymptotic expansion of the density of a diffusion, by
using the Malliavin Calculus as a tool. Let us remark
that Bismut pointed out in [4] that it is not enough to
only consider the first fluctuation of a degenerated dif-
fusion for studying the asymptotic in small time of a
degenerated diffusion.

We have translated in [15,16,17,18] the Malliavin
Calculus of Bismut type in semigroup theory in or-
der to get rough-estimates of some degenerated heat-
kernels. Our goal in this paper is to translate in semi-
group theory our note [9]. Let us recall the state-
ment: On R, we consider some vector fields X,
i = 0,..,m with bounded derivatives at each order.
We suppose that ( Hypothesis H) the Lie brackets of
length smaller than 2 of the X;’s, ¢ > 0, span in z the

whole space R?. We consider the operator

L=Xo+1/2) X}

>0

)]

The semigroup spanned by L has got in xy a heat-
kernel p;(zo, y) [19]. For studying precise asymptotic
of heat-kernels, it is standard to introduce the bichar-
acteristics associated to this problem. In our situation,
they are the solution starting from (z, pg) of

dxt(x(bp()) -
> < pe Xil@e(wo,p0)) > Xi(ze(o,p0))dt (2)
>0

and of

dpy = =Y < pi, Xi(ze(z0, po)) >

i>0
t 9 X;i( dt (3)
P z¢(z0, o))t
The introduction of bicharacteristics for subelliptic es-
timates is due to Gaveau [3]. We refer to [4] for an
introduction to Sub-Riemannian geometry. We can
study as it was done for instance by Bismut in [2] the
horizontal flow W;(xo, po)(2) associated to the equa-
tion starting from z

dz = z% Xi(ze)hi(zo, po)(t)dt

“
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where h;(z0,po)(t) =< pt, Xi(zt(wo,pg)) >. 2 —
W, (20, po)(2) is a diffeomorphism on R?. We set

1
Sieom) =X [ Baomia 6

>0

We introduce the following matrix [2]:

1
C= Z/o < U @0, po) Xi(wo),. >* dt (6)

>0

We denote by n(zg,po) the dimension of its image
plus twice the dimension of its kernel. We remark that
this quantity decreases when we travel along a small
bicharacteristic.

The goal of this note is to provide another proof of
the following result by Léandre [9,12] (who was using
the Malliavin Calculus) by instead using the Malliavin
Calculus of Bismut type without probability of [15].

Theorem 1 If pg is small enough, we have when t —
0

pt(-fo,.fl(xO’pO)) — t—n(aro,po)/g
exp[—S(z1(z0,p0))/2t](c(x1(x0, po)) + o(1)) (7)

For developments of the division method by
the Malliavin Calculus, we refer to the surveys by
Léandre [10,11,13,14], Kusuoka [8] and Watanabe
[24], and to the book by Baudoin [1]. For the study
of heat-kernels by using probabilistic tools, we refer
to the book by Kolokoltsov [6]. For analytical meth-
ods for the asymptotics on subelliptic heat-kernels, we
refer to [5,7,23].

2 Proof of the theorem

In order to estimate the heat-kernel p;(z, y) associated
to the generator L, we have only to estimate the heat-
kernel at time 1 pe(x,y) associated to the semigroup
P¢ with generator €2Xg + 1/2¢* Y, X? where we
have put €2 = t. We consider the time dependent gen-
erator

Lf = Xo+
1/262 Z X22 + Z hi(l‘o,po)(s)Xi 8)

i>0 i>0
We consider the generator L® on R%H!

EXo+1/23 X7+ Y hi(zo,po)(s)Xi (9)

>0 >0

where if ¢ > 0 Xi = (eXy, —hi(x0,po)(s)).
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This generator spans a semigroup ]—:’S6 such that by
[16]

Pi[f](z0) = exp[=S(z1(x0, po))/2t]
Plexplu/e] f](z0,0) (10)

We have applied for that the Cameron-Martin-
Maruyama-Girsanov formula in semigroup theory of
[15]. We use the Itd-Stratonovitch formula of Bismut
in semigroup theory of [16]. Let us consider the vec-
tor fields

Yf = (e\Il(xo.po)Z_lXi —hi(wo,po)(s))  (11)

if7 > 0and for: =0
Xo = W(z0,p0)s ' Xo (12)
and the time dependent generator
Ly =X+ 1/2) (X)) (13)
i>0

which spans an inhomogeneous semigroup F;. As in
[16], in order to estimate p;(xo, x1(x0,po)), we have
only to estimate the density at 0 of the measure on R¢

f = Pi[explu/e| f()](0,0) (14)
The main remark in the sequel is that
hi(zo,po)(s) =< po, ¥(z0,p0)s " Xi(zo) > (15)

Therefore if we replace in fz in Yf fort > 0
hi(z0,p0)(s) by ¥(z0,p0): 1 X;(20), we consider a
semigroup on R?? instead of R%*! and we have to es-
timate the density at 0 of the measure

f — Pilexp[< po,eu—y > /€] f(1)](0,0) (16)

where we have kept the same notations for the ex-
tended semigroup.

Lemma 2 There exists a r small enough such that if
lpo| <

sup P [exp[2 < po, eu —y > /€2]](0,0),00 (17)
e<1

Proof: In order to simplify the exposition, we ignore
the drift X (s). By proceeding as in [15], we have that
0 —e
|55 slexplC < po, eu —y >]](0,0)] <
C?e*P[exp|C < po,eu —y >]](0,0) (18)
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such that by the Gronwall lemma for s < 1

P;[exp[C' < po, eu — y >1](0,0)
< Kexp[KC%e%s]  (19)

such that

Plleu—y| > M](0,0) < K exp[~KM?/(¢*s)]
(20)
The same inequality holds for eu and y considered
separately such that

P < po,u > | > MJ(0.0) < K exp[—KM?/s]
(21)
and

P < po,y > | > M] < K exp[—KM?/(e25)]
(22)
The lemma will be proved if we can show that:

P{[| <po,eu—y>|> M]
< Kexp[-KM/e?] (23)

For that let us introduce as in [17] the Wong-Zakai
approximation of the semigroup P Let be a sub-
division of [0, 1] with smesh 7. In order to simplify
the exposition, we will suppose that the considered
vector fields do not depend on the time s. Let w' be
a centered Gaussian variable on R with covariance
nld. Let us introduce the ordinary random differential
equation:

xS (y, u ZX 2 (y, u))w'ds (24)
>0

starting from (y, u). We put

W.Nyef(y,u) = E[f(27"(y,w))]  (25)

We iterate this kernel k-times and we get a kernel
I/V.N,’;,e. An elementary finite-dimensional computa-
tion shows that

|AWN,’77€[eXp[C < po, eu —y >1](0.0)] <
nCZEQWNiE[eXp[C’ < po,eu —y >](0,0) (26)

provided that Cn'/2¢ remains bounded. We choose a
smesh 1) = Ke? exp[—Kj M /e?]. A discrete analogue
of the Gronwall lemma shows that VV.]\C’;6 satisfies to
similar inequalities as (19), (20), (21) and (22) uni-
formly for k& < n~!: these 3 last inequalities are ob-
tained by taking C = C1 M /€.

Let C;, be the set of paths from the lattice into
R??. We deduce a probability law W onit. As usual

Yy denotes supgr <y, |Yiry|-
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Moreover, if f is continuous and bounded, we de-
duce from [16] that

W.NY [£1(0,0) — P}, [£](0,0) 7)

uniformly for & < n~!. We regularize the indicatrix
function of the cube [—M, M]??. So if the smesh of
the subdivision is in €2 exp[—K1M/€?], it is enough
for showing (23) that

W.N [ < po,eu —y > | > M](0,0)
< Kexp[-KM/e?] (28)
if K1 is small enough uniformly for ¥ < ! and in e.

We distinguish two cases: y;n smaller/greater
than I M /2. We consider the function

gk = Whelexp[C' < po, €Upy — Y >]
ik, < KMY?)(29)
We see that
|Agk| < KMC?**ngy, (30)

for M'/2Cen'/? bounded. We deduce by a discrete
Gronwall lemma that

—y1 >lyi < kM2
< Kexp[KMC?¢* (31)

Wn,e[exp[c < Po, €U1

provided that M 1/ 206771/ 2 is bounded. Since n =
Ke? exp[—k1 M/€?], we can take in (31) C = Cpe 2
and deduce that
— > | > My < KM'?

< Kexp[-KM/e?] (32)

Wiy ell < po, eur

if M < 1. If M > 1, we have the same inequality by
the analogue of (20). On the other hand, if K is small
enough, we get

Welyt > KMY?] < K exp[-KM/e?]  (33)

In order to show (33), we use the Kolmogorov
lemma ([20]). Let X, be a process s € [0,1] on a
probability space such that Xy = 1 and

E[| X, — Xg|P]V/P < Cpls — &' (34)

for p large enough. Then X has a modification which
is Holder and X| belongs to some L" with an L"-
norm which can be estimated in terms of the C,.

We apply this to the measure W), . and to X =

exp[< C,ys >]. Provided that |C|en'/? is bounded,
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we find a bound by the considerations which follow
(26) of C,, in exp[K|C|?¢?]. Therefore we get pro-
vided that |C|en'/? is bounded that

W, lexp[< C,y >7]] < exp[KC’QGQ] (35)

(33) arises by taking |C| = C1 M /€% $

We put zp = 0. Let y = y1 + y2 where y; is the
component of y in the image of the quadratic form C
defined in (6) and y5 its component in the kernel of
this quadratic form. We write y; = Iy and yo =

Iays.
We do the change of variable

y — 1/ellyy + 1/e*yy (36)

such that the vector fields €W (zq, pg): ™' X; are trans-
formed as

(ITy + 1/€llo) W (z0, po) L X, (eIl y + €*Tlay) (37)

When ¢ — 0, these vector fields tend to

I W (w0, po) i 1 X (0)+
Mo DU (g, po)i ' X (0) 1y (38)

We consider the generator RS which is got after do-
ing this rescaling and Q)¢ the associated semigroup on
functions on R??.

The main remark is the following: The density at
0 of the measure

f — Pilexp[< po,eu—y > /€] f()](0.0) (39)

is equal to e "™(%0:70) times the density at 0 of the mea-
sure

f = Qilexp[< po,eu —y > /e!]f(4)](0,0) (40)
We do now the change of variable

€eu—y
.w) = (5. “5) @1
The vector fields in the extra-components are replaced

by

— 1/€¥ (20, po)s ' X:(0)+
l/e\Il(a;o,po):*lXi(eﬂly + 62H2y) 42)

which tend to DW(zq, o)1 X;(0)II; (y) when € —
0. After performing this rescaling we get an extended
generator RS with a corresponding extended semi-
group Q; We only have to estimate the density at
0 of the measure when € — 0:

f— Qilexp[< po,z >]f(1)](0,0)  (43)

We apply for that the Malliavin Calculus without
probability of Bismut type of Léandre [16] depending
on a parameter.
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Lemma 3 the measure

f = Qilexp[< po,z >]f()](0,0)  (44)

has a smooth density in y which depends continuously
on € belonging to [0, 1].

Proof: We give only the algebraic statement of the
proof. It uses the fact (see Lemma 2) that

sup Qflexp[2 < po,z >]](0.0) <oo  (45)
0<e<1

and the Malliavin matrix associated to the generator in
the first component with the rescaled vector fields has
an inverse bounded in all the L?, especially for € = 0,
since the Hormander’s hypothesis is fulfilled for Lie
brackets of length smaller than 2 (Hypothesis H). The
proof is therefore the same as the one of Theorem III. 1

of [16].$

3 Conclusion

We have translated in semigroup theory the proof of
theorem 1 given by Léandre in [8] by using the Malli-
avin Calculus. The main remark is that in [8] and [9]
only algebraic manipulations on stochastic differen-
tial equations are performed ans they have their coun-
terparts in semigroup theory. The only notion of the
theory of stochastic processes that is used is the ele-
mentary Kolmogorov lemma ([20]).
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