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Abstract: - Sensor-target and weapon-target pairings are important activities involved in planning and 
executing a course-of-action in a modern warfare. The outcome of today’s combat operations may strongly 
depend on the intelligent usage of available sensors and weapons maximizing their effectiveness. The problem 
can be considered as an assignment optimization problem in mathematics. This problem is difficult because in 
the real world it involves many different factors and criteria to consider. We show that for practical sensor-
target and weapon-target pairings a well-known auction algorithm should be considered the preferred choice. 
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1 Introduction 
Sensor-target and weapon-target (or briefly 
sensor/weapon-target) pairings are challenging and 
difficult optimization problems. However, with 
faster computers and better algorithms it becomes 
more realistic and practical nowadays. Furthermore, 
the outcome of today’s modern battles may strongly 
depend on the intelligent usage of available sensors 
and weapons maximizing their effectiveness. In 
general, these pairings consider many input types 
and the strategies of optimization might vary 
considerably. Hence, designing a single optimization 
algorithm for generic input is a hard problem. 
Efficiency of assigning weapons to targets might 
depend on the assignment of sensors to these targets, 
which further complicates this task. Sensor-target 
and weapon-target pairings, however, can be 
reduced to an assignment optimization problem, 
which is well known and studied in mathematics [3], 
[7-8], [10]. 

Let bjk be a benefit of assigning weapon j to 
target k when sensor i is already assigned to target k, 
i.e., si tk. If there exists some other sensor-target 
pairing si’ tk, which implies benefit b’jk of 
assigning weapon j to target k with b’jk ≠ bjk, then 
such sensor/weapon-target pairing is called 
dependent. Otherwise sensor/weapon-target pairing 
is called independent. In this paper we consider both 
types of problems. 

In today’s battlefields many types of weapons 
often rely on supporting sensors. As an example of 
dependent sensor/weapon-target pairings, lasing of a 
target by a forward observer can guide a precision 

weapon to its precise destination. For independent 
sensor/weapon-target pairing, the weapons might 
still rely on sensors. For example, there might be 
just one type of sensor under consideration, and the 
weapons that rely solely on it. In such a case, any 
complete sensor-target pairing could result in 
identical weapon-target benefit matrix. 

Let’s now consider a two-step approach to the 
sensor/weapon-target pairing problem. In the first 
step, a preprocessing algorithm converts all the input 
information into two benefit matrices A,B, where 
each aij in A and each bij in B represents a benefit of 
assigning row i to column j. In the second step, an 
optimization algorithm assigns rows to columns in 
matrices A,B in such a way that the total benefit is 
maximized. In this paper we focus on the second 
step of the above approach. There are a number of 
optimal algorithms that can solve it and they are 
well documented – algorithms based on  maximum 
matching in graphs [8], variants of the interior point 
algorithm [1,9,11], and the auction algorithm [2-7] 
to name a few. We show that for sensor/weapon-
target pairing the auction algorithm should be 
considered the preferred choice. In addition, we 
back this up with performance results based on a 
simple forward auction algorithm implementation in 
Section 8. 
 
2 Why Auction Algorithm 
To solve an assignment optimization problem 
focused on sensors, weapons and targets, we might 
first consider if it makes sense to use an exact 
optimization algorithm vs. an approximate heuristic. 
Since the number of sensors, weapons and targets in 
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realistic battlefield scenarios should run up to 
hundreds, we estimate that an exact optimization 
algorithm should perform time-efficiently (i.e., in 
order of tens of seconds). Hence our attention should 
be focused on finding an exact optimization 
algorithm for the assignment problem for this range. 

One of the better-documented exact optimization 
algorithms for an assignment problem is the auction 
algorithm [2-7]. For the above input size a well-
implemented auction algorithm should run in order 
of seconds, as it is verified in section 7. 
Furthermore, the bidding and assignment phases of 
the auction algorithm are highly parallelizable [4], 
which makes it scalable. That is, the bidding and the 
assignment can be carried out for all sensors, 
weapons and targets simultaneously, which could 
extend the range of input to thousands of sensors, 
weapons and targets and beyond. 

Finally, the nature of sensor-target and weapon-
target pairings should allow a benefit scaling, which 
could produce matrices A,B with all integral benefits 
aij,, bij (Section 7). This in turn could further 
improve the performance of the auction-based 
algorithms. In fact, this is the key for an efficient 
implementation of any auction algorithm. 

For much larger input sizes one could also 
consider variants of the interior point algorithm [1, 
11]. However, such inputs would be extremely rare 
for sensor/weapon-target pairing in the real world. 
In addition, one could still address this class of 
problems with the parallel implementation of an 
auction algorithm. 
 
3  Sensor/Weapon-Target Pairing 

Problem for Auction Algorithm 
Let aij be a value of assigning sensor i into target j, 
xij=1 indicate that sensor i is assigned into target j, 
and otherwise xij=0. Let bij be a value of assigning 
weapon i into target j, yij=1 indicate that weapon i is 
assigned into target j, and otherwise yij=0. We have 
the following sensor/weapon-target pairing 
mathematical formulation. 
 

(1) 

subject to 

(2) 

(3) 

(4) 

(5) 

The input to auction algorithm are matrices 
A[aij]n1n3 , B=[bij]n2n3 , where aij represents a benefit 
of assigning row i to column j in A (i.e., benefit of 
assigning corresponding sensor i to target j), and bij 
represents a benefit of assigning row i to column j in 
B (i.e., benefit of assigning corresponding weapon i 
to target j). 

In general, the number of sensors n1 or weapons 
n2 does not equal to the number of targets n3. If 
n1≠n3 and/or n2≠n3 then the input A, B to an auction 
algorithm can be easily translated into A’, B’ with 
n1=n2=n3=n by appending either rows with 0 entries 
(corresponding to phantom sensors/weapons) or 
columns with 0 entries (corresponding to phantom 
targets). Hence without loss of generality consider 
A, B as symmetric matrices of rank n x n for analysis 
of auction algorithm performance.  

There are two cases to consider for auction 
algorithm performance based on whether 
sensor/weapon-target pairings are dependent or not. 
 
4  Independent Sensor/Weapon-Target 

Pairings 
If sensor/weapon-target pairings are independent 
then we can translate (1) to the following 
optimization: 

 
max  ∑  aij . xij + max  ∑ bij . yij              (6) 

                          i,j                                         i j 

 
with constraints (2) through (5) staying the same. 
 An auction-based algorithm for independent 
sensor/weapon-target pairings can be presented as 
follows: 
__________________________________________ 

 
Step 1:  Generate benefit matrices A, B based on 

every possible sensor-target and weapon-
target pair. 

Step 2a: Execute an auction algorithm for sensor- 
 target pairings based on A. 

 Step 2b: Execute an auction algorithm for weapon- 
target pairings based on B. 

max  ∑  (aij . xij + bij . yij) __________________________________________ 
         i,j 

   ∑ yij ≤ 1 
    i 

   ∑ yij ≤ 1 
j 

 
Let ε be a minimum increase of bid cost for a 

sensor/target if an auction algorithm assigns a 
sensor/weapon to that target in its iteration. 
Assuming integral benefit matrices A,B (i.e., all aij, 
bij being integers), the auction algorithm guarantees 
that the feasible result of optimization is optimal if 
ε<1/n [2]. 

∑ xij ≤ 1 
 i 

∑ xij ≤ 1 
j 

Consider now the worst-case running time 
complexity of accomplishing an optimal assignment. 
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The assignment problem can be modeled with a 
bipartite graph G=(V,E), where the number of 
vertices |V(G)|=2n and the number of edges 
|E(G)|=m in G. Let C=max(i,j)∈E(G)cij, where cij 
represents a benefit of assigning sensor/weapon i to 
target j. The total number of iterations in which a 
target receives a bid is no more than C/ε. In 
addition, an auction algorithm can be implemented 
in such a way that its iteration involves a bid by a 
single sensor/weapon. So, the total number of 
iterations is no more than 2n times C/ε, and since 
every bid requires O(n) operations, the worst 
running time of the algorithm is 

 
O(n2C/ε)                                     (7) 

 
If all benefits aij∈A, bij∈B  are integers (which 

we can accomplish in most cases by scaling up 
every aij∈A and every bij∈B by appropriately large 
integer), and  ε<1/n, then according to [4] the worst 
time complexity is 
 

O(nm log(nC)).                           (8) 
 
5  Dependent Sensor/Weapon-Target 

Pairings 
If sensor/weapon-target pairings are dependent then 
the benefit matrices A,B (for assigning sensors and 
weapons to targets respectively) can be translated 
into benefit matrix H. In H each row corresponds to 
a unique sensor/weapon combination and each 
column corresponds to a target. That is, hij 
represents a benefit of assigning i’th distinct 
sensor/weapon combination to target j. Such a 
translation requires O(n3) operations. So H has n2 
rows and n columns, and represents the only input to 
our modified auction algorithm, which executes 
predominantly as a standard auction algorithm. It 
assigns n out of n2 rows to n columns in H with the 
following exceptions. 

A=

  9     6     2 
 
  8     4     1 
 
  7     2     0 

 
a) If sensor si and weapon wj are currently 

assigned to target tk, based on the best bid (i.e., 
siwj tk), then si’wj’ tk’ is not considered for 
assignment to target k’, k’ ≠ k if either i=i’ or 
j=j’. This assures that a sensor/weapon or target 
is not assigned more than once in an optimal 
solution. 
 

b) Based on the best siwj tk assignment a second 
best assignment for target k’, k’ ≠ k is 
determined by si’wj’ tk’, where either i’=i or 
j’=j depending on implementation. This allows 
calculation of a penalty cost for auction bids. 

So, a modified auction-based algorithm for 
dependent sensor/weapon-target pairings can be 
presented as follows: 

___________________________________________ 
 
Step 1: Generate benefit matrix H based on every        

possible triplet combination  < si, wj, tk >. 
Step 2:  Execute a modified auction-based algorithm 

for sensor/weapon-target pairings based on 
matrix H and rules (a) and (b).  

___________________________________________ 
 
As was the case with independent 

sensor/weapon-target pairings, the total number of 
iterations in which a target receives a bid is no more 
than C/ε. In addition, our modified auction 
algorithm can be implemented in such a way that its 
iteration involves a bid by a pair of a single weapon 
along with the best available (unassigned) sensor. 
So, the total number of iterations is no more than n 
times C/ε, and since every bid requires now O(n2) 
operations, the worst running time of the algorithm 
is 

 
O(n3C/ε)                                     (9) 

  
6 Auction Algorithm Anomaly 
The running time of the auction algorithm is not 
always monotonic in respect to the ranks of A, B. In 
the best scenario an auction algorithm requires just 
O(m) comparisons/assignments to arrive at the 
optimal solution. 

The following example illustrates an apparent 
anomaly, where the number of iterations and the 
number of benefit comparisons actually decreases as 
the new sensors and targets are introduced to a 
current scenario in the battlefield. Let the initial 
benefit matrix A be as illustrated in Figure 1. 

 
 
 
 

 
 
 
 
 

Fig. 1 – Initial benefit matrix 
 
Let sensors s1, s2, s3 correspond to rows 1, 2, 3, and 
targets t1, t2, t3 correspond to columns 1,2,3 in A. If 
the search order in an auction algorithm starts with 
the first row and column, and continues through the 
consecutive rows/columns, then the corresponding 
sensor-target assignment sequence is as follows: 
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   s1→t1, s2→t1, s3→t1, s1→t2, s2→t1, s3→t1,  

s2→t2, s1→t2, s2→t3                     (10) 
 

Clearly, it requires 9 sensor-target assignments 
and consequently 9*3 =27 benefit comparisons. 
Consider now augmented A (i.e., A’) with two 
additional rows corresponding to sensors s4, s5, and 
with two additional columns corresponding to 
targets t4, t5 (Figure 2).  

For the same search order as before, the 
corresponding sensor-target assignment sequence is 
as follows: 
 

s1→t4, s2→t5, s3→t1, s4→t2, s5→t3         (11) 
 
In this case the optimization requires 5 sensor-target 
assignments, and consequently only 5*5 =25 benefit 
comparisons. This is due to less required re-
assignments in (11). Thus, sequence (11) requires 
two less benefit comparisons than the initial 
sequence (10). Note, the sequences (10), (11) can be 
verified based on [2]. 
 
 

A’=

  9       6       2     10       1 
 
  8       4       1       1     10 
 
  7       2       0       0       0 
 
  3       4       0       0       0 
 
  3       4       5       2       1 

 
 
 
 
 
 

 
 
 
 
 
 

Fig. 2 – Augmented benefit matrix 
 
7  Efficiency of Scaling 
The key to a good performance of an auction 
algorithm for sensor/weapon-target pairing problem 
is intelligent scaling of matrices A,B and H. An 
efficient way to do it for independent 
sensor/weapon-target pairing would be as follows. A 
preprocessing algorithm converts all the 
sensor/weapon-target related input information into 
two nxn benefit matrices A,B, where each aij in A 
and each bij in B represents a benefit of assigning 
sensor/weapon i to target j with at most k places 
after the decimal point. Considering the fact that 
many inputs have to be taken into account in the real 
world for a sensor/weapon-target pairing scenario, it 
makes sense not to consider too many places after 
the decimal point. Then matrices A,B are converted 

into matrices A’, B’ where a’ij= n.aij.10k and b’ij= 
n.bij.10k.  In addition, a minimum bidding increment 
parameter ε is set to 0.99 (i.e., in general ε<1 must 
be satisfied). Consequently, this set-up assures that 
any complete assignment generated by an auction 
algorithm is optimal. So, the optimization can be 
terminated after the first complete assignment is 
obtained. A similar approach can be applied to 
dependent sensor/weapon-target pairings. In this 
case matrix H is converted into matrices H’, where 
h’ij= n.hij.10k.  A minimum bidding increment 
parameter ε again is set to 0.99. 

8  Computational Results and 
Conclusions 

We implemented a simple forward auction with the 
benefit scaling algorithm in a Linux RedHat 9.0 
environment on a PC with Intel® Pentium ® 4 CPU 
1500 MHz. Our implementation supports the input 
of up to 1,000 sensors/weapons by 1,000 targets. We 
conducted performance experiments for independent 
sensor/weapon-target pairings with inputs of up to 
200 sensors/weapons by 200 targets. 

The optimal solution resulted in an improvement 
of up to 12% over the initial score obtained by our 
ad hoc heuristics. The average improvement resulted 
in 3.3%, and the average execution time of the 
auction algorithm was 2.8s. In addition, the average 
execution time per target was 0.03s. We also 
observed that the benefit of getting an optimal 
solution tends to increase as the total number of 
sensors, weapons and targets increases. 

Based on these results we conclude that for 
dependent sensor/weapon-target pairing problems, 
the distributed implementation of the auction 
algorithm could be a critical factor in satisfying real-
world optimization scenarios, and could yield even 
better performance. Such implementation is well 
suited for the auction algorithm as indicated in [4].  
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