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Abstract: We use the method for building fractal functions, from periodic scaled components, for the generation 
of optical and electronics fractal signals. For the processing, we consider the conditions for the application of the 
Shannon-Whittaker theorem for such cases. We use an expression of the sampling theorem for periodic (band-
limited) functions. 
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1 Introduction 
The signals with certain degree of complexity have 
diverse applications in sciences and technological 
development [1-4]. It is for this reason that many 
authors are focused not only in the identification of 
such types of signals in natural or socioeconomics 
systems, but also in the generation and processing of 
them [5-8]. 
In previous works [9-11], it has been demonstrated 
that some prefractal structures can be obtained 
starting from periodic distributions (with a scaling 
factor between them). This fact is important for 
applications in the processing of optical and electrical 
signals, where some type of geometry can be required 
in the final signal. Also, an extension of the 
mathematical basis has been included in a recent 
development [12]. In the present work we are 
interested in showing a method for the generation of 
fractal signals using the procedure previously 
mentioned. We also include a variant of the Shannon-
Whittaker theorem to exemplify the measurement 
procedure and processing of such signals. We 
consider two types of systems: 1) electronics signals, 
just as it is the case of a carrier signal and the 
periodic components included as products, 2) array of 
interferometers in cascade that allows to obtain a 
fractal structure at the output, from the superposition 
of fringes. 
 
2 Fractal signals with periodic 

components 
There are three basic transformations for building 
fractal objects: change of scale, translation and 
rotation. In several works we have used these 
transformations for the construction of fractal 
structures [9-11]. In these cases, we used periodic 
domains which are defined through distribution of 

disjoined sets included in 1D or 2D Euclidean space. 
The mathematical expression to obtain such fractal 
structures is: 
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where P[] is a set of scaled periodic (band-limited) 
functions, s is the scaling function and hk is an 
exponent which permits filtering any periodic 
component individually. 
Now, we include a method for building fractals sets, 
which was developed with more details in Ref. [12]. 
 

 
 
Figure 1 – Sequence of sets Fk, obtained as the 
product of scaled periodic components, fi(fj) are the 
successive contractions and xm() are the fixed points 
for the boundary of region equal to zero. 
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The foundation to represent regular fractal sets 
through a product superposition can be obtained by 
using a sequence of sets, which are the union of 
disjoined intervals (or contractions). If we have a 
sequence of sets, defined in the  space, whose 
boundary is obtained through the transformation: 
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where k refers to each periodic component, [ ]xsT k ;  
define contractions and each . These 
contractions are shown in Fig. 1, together with the 
fixed points obtained in each iteration. This fact 
allows to define a non-linear Iterated Function 
System (or IFS) [13]. 

)(xf k

So, using the theory of IFS function, it can be seen 
that the sets contained into the boundary defined in 
Eq. (1), have the following property for the sequence 
of sets Fk: 
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where x ∈ [-L,L] and 0≤y≤1. 
 
 

 
 
Figure 2 – Positions of fixed points in the product, 
related with the periodic components (up). Fixed 
points in the product (boundary equal to 0 or scaled 
components equals to 1). 
 

If we consider the periodic signal functions as the 
boundary of sets (see Fig. 1), we can obtain the 
resulting signal (boundary of the attractor sets of Fig. 
1). The process, to determine the fixed points for each 
iteration, is schematized in Fig. 2. We can see that a 
fixed point is given at the value 1 for the periodic 
function, from a certain periodic component and the 
successive scaled component from it. 
 
2.1 Samplig of complex signals 
The Shannon-Whittaker theorem (or sampling 
theorem) [14-16] relates the measured points of a 
certain signal and the possibility of reconstruction of 
such signal completely. Here, we use a consequence, 
expressed for the case of periodic band-limited 
functions [17]. Then, our interest is the inclusion of 
this formulation for the case of prefractal signals, 
obtained through a product superposition of periodic 
functions. The sampled function can be represented 
as a simple function, which is defined as: 
A function RXf →:  is called simple if [12]: 
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being Ii∈B (a Borel set), Ri∈ℜ for i=1,2,…,K; χ[Ii;x] 
is the characteristic function. 
This way, we want to show a consequence of the 
sampling theorem for the reconstruction of signals 
with complex geometry. In Ref. [17] was obtained 
the expression for the sampling theorem, which is 
given by: 
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being K the number of samples and Λx is the size of 
the interval in the variable x. 
Using Eq. (1), we can represent functions such as the 
one plotted in Fig. 1, employing a certain sampling 
frequency (for a single period). So, the sampling 
theorem is applied for the product superposition of 
periodic functions, which initially can be 
independently obtained. Then, using the product of 
functions of Eq. (1), the Shannon-Whittaker theorem 
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can be expressed as: 
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where now χ[In;x] (= 0,1) is the characteristic 
function for each periodic components. The interval 
In is related with the width of the corresponding 
sampling interval and the supra-index k indicates 
each periodic component. Furthermore, Rn is the 
value of the function at the point n. 
This means that if there is a system with several 
inputs (one for each periodic component), a signal 
described by Eq. (1) at the output; then, the sampling 
for each component and for the output signal are 
related through Eq. (5). Also, we can see that the 
sampling interval will be given by the corresponding 
interval of the component with smaller period. 
 
 
3 Results obtained and discussion 
Until now we have shown the method to obtain 
structures of fractal using periodic band-limited 
functions. 
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Figure 3 – (a) Optical setup. (b) Block diagram of the 
electronic system. 
 
 

The Shannon-Whittaker sampling theorem assures us 
that we have a good representation of a function 
which possesses an experimental base, since the 
function is represented by discrete points obtained, 
for example, when a CCD-camera is used for optical 
signals. 
When we implement practically the previous results, 
for the registration of complex signals, the infinite 
points of the fractal objects are never obtained. In the 
measurement of a certain signal only discrete points 
are obtained. Then, we can relate these points with 
the representation as a simple function. For example, 
the cosine functions (cos2) of the Fig. 1 are built with 
finite number of points, with a scaling factor between 
each periodic component. 
In Fig. 3a the experimental setup, with 
interferometers in cascade, are shown. The elements 
indicated with M are mirrors, with L are lenses and 
with B are beamsplitters. The fringes (and the 
corresponding profiles) are obtained from a CCD 
camera, and can be visualized in Fig. 4. The block 
diagram in Fig. 3b shows the way in which the 
electronic signals are superposed through the 
following process: analog/digital converter, product 
and normalization (D/A-A/D). The electronic signals, 
registered with an osciloscope are shown in Fig. 5.   
In both cases periodic components (of the type cos2) 
were generated, and it is seen that fractal structures 
are obtained at the output, whose mathematical 
foundation for the generation and processing was 
exposed in section 2. 
 
 
4   Conclusions 
In this work, we used the well-known results for the 
construction of prefractal functions through periodic 
components. As an example, we used cosine 
functions, which can be obtained from the 
measurement of optical or electronic signals. Since 
the function has a periodic envelope, we use a version 
of the sampling theorem which permits us to 
represent it (and their scaled periodic components) 
from finite number of points. The sampling interval 
that must be used is the one corresponding to the 
component with the smallest period. 
The result presented here represents a simple method 
for the generation and processing of fractal signals 
that can be used in diverse fields of technology, such 
as encryption, barcodes, images, general metrology, 
etc. 
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Figure 4 – Intensity vs. spatial coordinate for the 
interferometers in cascade of Fig. 3: (a) first periodic 
component, (b) second periodic component, (c) 
fractal structure with order 3. 

 
(a) 

 
(b) 

 

 
(d) 

 
Figure 5 – Voltage vs. Time for the electronic signals 
for the block diagram of Fig. 3: (a) first periodic 
component, (b) second periodic component, (c) 
fractal component with order 3. 
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