

Automated Peer-to-Peer Security-Update Propagation Network

ZAKIYA M. TAMIMI

Faculty of Information Technology

Arab American University-Jenin

Jenin, West Bank, P.O. 240

PALESTINE
ztamimi@ken http://www.cs.kent.edu/~ztamimi

Abstract: - In this project we design and implement a security-update propagation network that employs peer-to-

peer model, where computers act as equals and all hosts participate in providing security update services. When a

computer node joins the network to download new security updates it is automatically enlisted to serve other

computers with older updates. Hence, as network size becomes larger its capability to provide service will

increase and performance balances very well. To protect the network against malicious computers that may join in

to spread infected files, we employ digital signature to verify the validity of any download and identify infected

nodes. In addition, we incorporate other features in our network such as: the support for multiple platforms,

automation, new update notification, and software update.

Key-words: - Peer-to-peer, System patch, Security flaw, Platform, Internet worm, Digital signature,

Multithreading.

1 Introduction
In recent years Internet users and services have faced

unprecedented volume of security outbreaks

including: very fast worms, Trojans, and Distributed

Denial of Service (DDoS) attacks. Cyber criminals

spread their malicious codes that will transform

infected machines into zombies that can be used to

launch further attacks. Internet worms that penetrate

into a machine through some security flaw can spread

at large scale in super spreads harming not only

infected machines but also network traffic. Such

security threats are facilitated by the massive size and

high-connectivity of the Internet. One logical way to

counter massive scale attacks is by securing end hosts.

Some software suppliers provide system patches that

can fix some software security flaw or can detect and

remove malicious codes. The dissemination of these

system patches (or security updates) is implemented

using fixed number download centers, which cannot

measure up in terms scale or performance with current

security threats.

Some research work [3, 5, 6, 8] has proposed making

worm-like mobile codes that will combat malicious

worms at their rate. Such solutions however pose legal

issues as well as possible side effects [1, 2, 4, 8].

Another solution would be to exploit the collective

power of the many end-user machines in detecting

worms and spreading patches [7, 9, 10]. By

considering the fact that Internet worms make use of

end-users computers as engines to spread their

infections, it makes sense that employing the same

end-users machines to detect and clean worm

infection will create an equal “force” to counter worm

spread.

There are quite few examples of distributed

computing systems that employ end-users machines to

achieve high computing power, massive storage, and

connectivity. The most popular model for such

collaboration between nodes is peer-to-peer systems,

which have been employed in file sharing and media

streaming, e.g. [9] and [10]. Contrary to client-server

model, in peer-to-peer (or simply p2p) model there is

no specialized client or server node. Instead all nodes

are equally peers. Since any node that joins the

network of peers can provide service as well as

receive a service, p2p systems are naturally balanced

and scale in performance.

IT was proven mathematically in [7] that a p2p system

of computers can disseminate security patches

effectively which a fixed number of patch server

cannot attain [7]. The goal of this research is to design

and implement security-update propagation software

Proceedings of the 11th WSEAS International Conference on COMPUTERS, Agios Nikolaos, Crete Island, Greece, July 26-28, 2007 557

that will disseminate security updates among end-host

in peer-to-peer fashion. An end-user computer that

joins the network to download new security updates

will be thereafter enlisted to serve other computers

with older updates. Thus, performance of the system

scales and balances naturally.

Next sub-section briefly describes related research

work in the same line as this. In section 2 key design

objectives of the system are listed. A definitions of

terms used throughout this paper are in section 3.

Discussion of the system protocols, data structure, and

functions described in section 4. In section 5,

implementation techniques are briefly discussed. In

section 6 present issues concern relate to the

deployment of the system. Finally we conclude in

section 7.

1.1 Related Work
Shakkottai et al have studied in [7] two methods for

patch distribution to fight autonomous worms. They

prove using fluid model that using P2P system is far

more effective than traditional patch centers. Earlier

Vojnovi´c et al proposed a hierarchical system of

network computers arranged in subnets, each with a

"superhost". Patches are spread to "superhosts"

through an overlay network and then distributed to

end hosts within each subnet [12].

2 Design Objectives
In this section we discuss key design objectives that

guide our design.

� The system should provide file sharing of security

update files, such that many replicas of the file

can be searched for and downloaded.

� In addition, the system should be automated, that

is to say, the decision of which updates are

needed, where to locate them, and how to install

them should require no human interaction.

� As some peer-to-peer file sharing systems have

enabled the spread of worms though shared files,

we make it our objective to prevent malicious

nodes or nodes with virus infections from

spreading their infection.

� The system should also be platform independent.

In other words, the resulting network should be

able to provide together system updates for

various platforms.

� The nodes of the system should be notified

promptly of new updates as they are made

available by originator.

� Since security needs tend to change in short time,

we want our software to be updatable "on the go".

That is to say, without installing a new version of

the whole thing and of course without human

interaction.

Some of the system's objectives include scalability

and performance-balance is inherited characteristics of

peer-to-peer system. As more nodes join the system

the demand for service will increase and so will the

service capacity of the network; since every new node

can provide it as well as receive it. Peer-to-peer

system self organized and nodes will change their

roles as provider or recipient of service automatically

and thus require low administration. Most important

of all it is possible to establish a huge service network

with super capacity as almost zero-cost by

aggregating end-hosts resources such storage,

bandwidth, and processing power.

3 Definitions and assumptions
In our system there are two types of entities: index

servers and peer nodes. A peer node can be in a server

mode or client mode. Both modes are actually running

simultaneously. We refer to a peer node running in

client mode as client and a peer node running in server

mode as server.

Update files are executables that when downloaded

and installed can do one or more of the following

functions: diagnostic, fixing, malicious code detection

and removal. The diagnostic function is to test for

existing security flaw, or collect information about

current security status of a machine. Once a flaw is

detected it can be fixed (or patched), e.g. close an

open port. Update file can also detect for the existence

of some known worm or Trojan and can remove them

from the system. A single security update may require

multiple steps of download, install, and restart. More

important one peer node may download different

security downloads from different other peer nodes.

Software update is another type downloads that are

used to upgrade the peer node software. Such

upgrades can be to fix a flaw in the code or to enhance

performance or extend functionality.

Proceedings of the 11th WSEAS International Conference on COMPUTERS, Agios Nikolaos, Crete Island, Greece, July 26-28, 2007 558

Both Update files and software updates have version

numbers that are incremental. The version number is

the release date and time for the file. Example, if the

release date and time is: 16/4/2007 at 17:55 then the

version number would be v200704161755. Any peer

node is said to have version number that is of the

highest version installed. For any platform the most

recent download is the one with highest version

number, and any peer node that has the maximum

version number installed is said to be up-to-date. If

two nodes have different version numbers, the goal of

any peer node is to become up-to-date by

downloading and installing all downloads up to the

most recent download.

A peer node is called malicious peer if it attempts to

upload a modified copy of some original download.

Every list of servers have an Expiration date which is

the maximum version in the database table, its used to

flush the list only if the version number of the client

equals the maximum version number.

4 Design
The behavior of a peer node and index server can be

described as shown in figure 1 and figure 2,

respectively. When the peer node joins the network it

will inquire about potential server nodes from the

index server. If the node however is up-to-date (has a

version number equal to the maximum version

number at the index server) it will enlist itself as

server at the index server and can provide its services

to other nodes.

If however the peer node is not up-to-date, the index

server will provide the client node with a list of

servers from which it can download necessary

updates. The client will connect to one of the servers

and inquire about the list of needed downloads. Once

the list is received from a server the client will process

the list by downloading and installing each file unit

the list is empty. To insure that originality of the file

and thus prevent the spread of infected files each file

is digitally signed by its originator and the client will

verify the signature before installing the file. If the

signature cannot be verified the client will report

detection of malicious node to the index server. Once

the client is up-to-date it will be enlisted as a server by

index server. It will remain in that state until it is

notified of a new update by the index.

4.1 Server Lookup
Index server keeps an index table that contains records

of all peer nodes in the system. Index table format is

shown below:

{(IP, Platform, Region, Version#, Node-type,

Expiration-date, Last connection time)k: k=0..n}.

The region field is the country of the node, which can

be determined given the IP address by using some

web service. Node type can be either "C", stands for

client, or "S", which stands for server. Expiration date

is important in order to remove records that are of no

use. The expiration date is updated each time a node

connects to index server to be the time of last

connection plus some constant. When expiration date

is reached the expired record will be deleted from

index table. A client node will connect to index server

in order to request a list of servers. This list contains

potential servers that can server a specific client. The

format of the list of servers is as follows: {(server IP,

server ver#, server region)k: k=0..n}

Fig 3: looking up potential servers at

the index server

Figure 3 shows the message exchange between a peer

node and an index server. The client will send

ServerSearch message to the index server, which has

the following format:

"ServerSearch"| IP address| Platform| Version number

ServerSearch

Response-for- ServerSearch

Client Index server

Establish connection

Close connection

Proceedings of the 11th WSEAS International Conference on COMPUTERS, Agios Nikolaos, Crete Island, Greece, July 26-28, 2007 559

Enlist as

server

Serve look up

Version is up-to-date

Notification

Get list of new

updates Version not u
p-to

-date

Update lis
t is

 empty

Download file

Install file

Detection of

malicious

node

successful

Fail

Signature not valid

Signature valid

Update list is not empty

Node goes online

Fig 1. Peer node state diagram

Register node

Server lookup

Enlist as

server

Notification

Version num < max

Vers
ion n

um
 >

 m
ax

Version num = max

Fig 2. Index server state diagram

Proceedings of the 11th WSEAS International Conference on COMPUTERS, Agios Nikolaos, Crete Island, Greece, July 26-28, 2007 560

The index server will check the client’s version

number and if it equals to the maximum version

number in the index table, it return a response

message that contains response code “up-to-date” and

will enlist the peer node as server. If the index server

finds no potential servers of the same platform then it

will return a response message with “error” response

code. The index server search for the server IPs that is

the preference same region for the client and the

version number is higher than the client number. If the

result of the search is less than some constant number

(n) then the index server will search for the non-

regional server that have the same platform and higher

version number, then add the result to the list to fill up

the list with (n) IP addresses. Then it will return

Response-for-Server-Search message, which has the

following format:

“Success”| List of servers

Client will store the list of server sorted according

version number in descending order and then will try

to establish successful connection with a server

starting with the most up-to-date. The client caches

the IP list to reuse it as long as its version number is

less than the highest version number in the list and

will flush this list when the local version number is

equal for the highest version number in the server list.

The client will try when possible to connect to a server

of the same region as the client’s. This will make

faster requests and responses with that server faster

since that server is closer.

4.2 Get List of New Updates
List of updates is a list of all file names that are

necessary to be downloaded and installed by a node to

become up-to-date. The format of the list is as

follows: {(filename, ver#, flag)k, k=0..n}. File name

may also its version number, e.g. “Blaster2.0-

v20051204020.exe". Flags will direct the client on

how to install the downloaded file, which is discussed

in subsection 4.7. Figure 4 shows the messages

exchanged between a peer node and a server peer

node in order to get the list of updates. Initially the

client sends request-list-of-updates message with the

following format:

“RequestUpdates”| Client version number

In response the server node will search its update list

for all file that have higher version number than

client’s. It will then generate a working list of update

that contains only the files that are needed by the

client and send response-for-list-of-updates-request

message with the following format:

“Success”| Working list of updates

Fig 4: get list of new update

If the server cannot generate such working list it will

return a message with “error” response code. The

client will store the working list and process it starting

with lowest version number element until the list is

empty. For each element it will download the

corresponding file, remove element from working list

and add it to its local list of updates.

4.3 Download File
To download a file the client will connect to some

server, which has version number higher than the

required file version number. It will then send request-

file-download message with the file name. If the

server doesn’t have the file it will respond with an

“error” response message. If the file is available, the

server will send response-for-file-download-request

message with the following format:

“Success”| Binary of the file

This interaction is described in figure 5. Each

download file weather diagnostic, fix, or software

update should contain a digital signature in order to

verify it originality and hence prevent the spread of

infected file. A digital signature is a hash on the file

that is encrypted using the private key of the file

originator. To validate the originality of the file, the

client will should first decrypted the digital signature

using the public key of the originator. If the signature

is valid the client will cache the original copy (with

digital signature) and then will install the file. On the

other hand, if the signature cannot be verified, the

client will move into detection of malicious node

state, which is discussed in section 4.5.

request-list-of-updates

response-for-list-of-updates-request

Client Server

Establish connection

End connection

Proceedings of the 11th WSEAS International Conference on COMPUTERS, Agios Nikolaos, Crete Island, Greece, July 26-28, 2007 561

Fig 5: request and response messages

to download a file.

4.4 Install File
After the client has downloaded and verified the

digital signature of the received file, then it will install

the file according to the flags that are given in the

corresponding element in the working update list. For

example if the flag is “fix” then the client will run this

file which will fix will do action like close some ports,

delete or modify files, stop some service, etc. if the

flag is “diagnostic” the client should run this file

which will diagnose for some specific condition and if

the condition is found as result of this diagnostic the

client will install the next file in the working update

list, which is the corresponding fix of this condition.

Otherwise the client can safely skip the next item in

the working list. The file can also be a software update

file, which has corresponding flag “SoftwareUpdate”.

In this case the file will be copied to replace an older

version and the application will have to restart. The

advantage of have separate diagnostic and fix file is to

have the executables of smaller size and thus save

time of download and install when a fix isn’t needed.

4.5 Detection of Malicious Node
When the digital signature of some downloaded file

cannot be verified, the client will mark the

corresponding server from which it downloaded the

file as malicious. Then it will send Warning-

malicious-node-detected message to the index server

with the following format:

“Warning”| IP address of malicious server| Infected

file name

Figure 6 show warning message sent from client peer

to index server. In response the index server will

update the type of the corresponding node to “M”

which stands for malicious.

Fig 6: warning message.

4.6 Notification
As mentioned before an index server keeps track of all

nodes in the system and their types whether client or

server. When a server node X with version number

higher than the maximum version number at the index

server table connects, the index server will update its

maximum version number and will notify all online

server nodes that have the same platform as node X of

the new updates, as shown in the figure 7. The

notification message has the following format:

"NewUpdateAvailable"| New version number

We reason that notifying server nodes is enough as

follows. Any node in the system can be either online

or offline. If a node is offline then it will go into

Server lookup state when it starts up. If it is online in

client status, then it will automatically go into Server

lookup state after finishing the updating process. On

the other hand, the server will react to a notification

message by switching to client mode and do Server

lookup.

Fig 7: Index server will notify all

online server nodes

5 Implementation
For the purpose of this project we have chosen Java as

implementation language for multiple reasons. Java

supports object serialization that is the ability of a

program written in Java to read or write a whole

object to and from a raw byte stream. We use

serialization to exchange data structures like List of

Servers and List of Updates between nodes. This has

Warning-malicious-node-detected

Client Index server

request-file-download

response-for-file-download-request

Client Server

Establish connection

End connection

Index server

Notification-of-new-update

Server peer

Proceedings of the 11th WSEAS International Conference on COMPUTERS, Agios Nikolaos, Crete Island, Greece, July 26-28, 2007 562

simplified coding process and saved time of parsing

and processing messages that otherwise could be

exchanged using sockets technology. We still make

use of sockets to exchange short messages as well as

in the implementation of file upload/download object

that is discussed in section 4.4.

We use multithreading to enable a server node to

serve multiple clients at one time. Also, a server node

can initiate a client process meanwhile maintaining

connections as server with other client nodes. A client

process can initiate multiple threads to download

multiple files in parallel. However, the installation of

files is kept in sequence since updates are incremental

in nature.

One of the features of our software is its ability to

update itself. Instead of asking end-users to download

a new version of the software; we simply provide the

bytecode (.class file) of the updated object. The file is

downloaded as explained in sec 4.3 and then installed

by replacing the old (.class) object with the new one,

as explained in section 4.4.

6 Deployment
In this section we discuss concerns of how to make

such network a real-world service.

� Initially, end users who choose to join the

network will have to download our software. This

can be done through a website that provides the

executable as well as installation instructions.

� Our current version supports a single index server.

However in real world, multiple index servers

should be designed and deployed such that they

can collaborate with each other. For example one

index server should redirect a client request if it

cannot find any matches for clients query in the

local index table. Also, an index server should

notify other index servers when it detects the

release of a new update.

� In order for the client peer to find the IP address

of an index server we suggest employing a CDN

architecture. A client node will need to know the a

single virtual IP address that is translated by DNS

to IP address of one of the index servers based on

location and load balancing.

� When a new security updated is released, it

should be installed manually on some machines

(e.g. computers of the update originator) and their

version number should be updated. As those

machines join the network, the index server will

register them as servers and will notify other

servers in the network, as explained in subsection

4.6.

7 Conclusion
In this paper we presented a practical design and

implementation of a peer-to-peer system that can be

used to disseminate security updates. To our best

knowledge, this is the first implementation of such

service and has many features including: new updated

notification, support of multiple platforms, and self-

immune to malicious nodes. Our current

implementation does not handle virtual IP's. In the

future versions we would like to solve this problem.

Another enhancement we would like to add in the

future is to allow the index server to remove offline

nodes from its table and thus improve the chances of

connection establishment with a server in the list of

servers

References

[1] Z. Tamimi, J. I. Khan, Model-Based Analysis of

Two Fighting Worms. Proc. of ICCCE'06, Kuala

Lumpur, Malaysia, May 2006, 157-163

[2] A. Gupta and D. C. DuVarney, Using predators to

combat worms and viruses: a simulation-based study.

Proc. of Computer Security Applications Conference,

Tucson, Arizona, USA, December 2004, 116- 125

[3] F. Castaneda, E. C. Sezer, J. Xu, WORM vs.

WORM: Preliminary Study of an Active

Counter-Attack Mechanism. Proc. of WORM'04,

Washington DC, USA, October 2004, 83–93.

[4] H. Kim, I. Kang, On the functional validity of

the worm-killing worm. IEEE Communications,

Paris, France, June 2004, 1902-1906

[5] D. M. Nicol, M. Liljenstam, Models of Active

Worm Defenses. IPSI Conference, Studenica,

Serbia, June 2004

[6] H. Toyoizumi, A. Kara, Predators: Good Will

Mobile Codes Combat against Computer Viruses.

Proc. of New Security Paradigms Workshop.

Virginia Beach, USA. September 2002, 13-21.

Proceedings of the 11th WSEAS International Conference on COMPUTERS, Agios Nikolaos, Crete Island, Greece, July 26-28, 2007 563

[7] S. Shakkottai, R. Srikant, Peer to Peer

Networks for Defense Against Internet Worms.

Proc. of Inter-Per. Pisa, Italy, Oct 2006.

[8] Z. Tamimi, J. Khan, Modeling and Analysis of

Worm Attacks with Predator and Patching Interplay.

Proc. Of IASTED CIIT’06, Virgin Islands, USA,

Nov 2006.

[9] KaZaa, www.kazza.com

[10] Skype, www.skype.com

[11] M. Costa, J. Crowcroft, M. Castro, A. Rowstron,

L. Zhou, L. Zhang, P. Barham, Vigilante: End-to-End

Containment of Internet Worms. Proc. of SOSP’05),

Brighton, United Kingdom, October 2005.

[12] M. Vojnovi´c, A. J. Ganesh, On the effectiveness

of automatic patching. Proc. of WORM’05, Fairfax,

VA, USA, November 2005.

Proceedings of the 11th WSEAS International Conference on COMPUTERS, Agios Nikolaos, Crete Island, Greece, July 26-28, 2007 564

