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Abstract: In control loop operation we can encounter the problem that the properties of the control variable 
sensor start to change. This is not usually a case of total sensor failure, but the sensor starts to provide data that 
is not correct and thus not reliable for the controller. As will be shown, the problem is that such an incipient 
control variable sensor fault may lead to so-called control variable sensor discredibility: a specific and a barely 
detectable status, in which the indicated value of a control variable does not match its real value. However, this 
is not the only negative consequence, as undesirable side effects may sometimes occur and remain 
unrecognized. As will be shown, there may be unacceptable side effects. These are especially undesirable in 
bioenergetic processes, because they lead to an increase in harmful emissions. This paper presents results 
obtained while testing model-based sensor discredibility detection, using the least squares method, and also a 
proposal for discredibility detection using a statistical approach. 
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1 Introduction 
Information about the value of the control variable in 
control loops is usually acquired by a control variable 
sensor. In the event of total sensor failure, it is easy to 
recognize this status, because the control loop will no 
longer maintain the control variable at the desired 
value. By contrast, gradual changes in control 
variable sensor properties are not easy to recognize. 
The data acquired by the sensor becomes increasingly 
biased. After it exceeds the tolerance limits, the 
acquired data is no longer credible. This leads to the 
co-called control variable sensor discredibility status, 
in which the control loop performs its function, but 
with barely detectable inaccuracy. There is not only a 
danger that the control variable exceeds the limits 
within which it can be tolerated as correct, but there 
can also be undesirable site effects. As far as the 
operator of the process is concerned, everything 
appears to be working properly, because the control 
loop of standard instrumentation does not provide a 
second reading of the control variable through which 
the control loop inaccuracy could be discovered. 

In practice, the problem of control variable 
sensor discredibility detection is usually left unsolved. 
If discredibility detection is required, it is usually 
provided by hardware redundancy. However, this 
involves additional costs. A cheaper solution of the 
discredibility detection problem is offered by a 

controller that is enhanced by a software function for 
discredibility detection. 

According to [1], fault detection methods are 
classified in three general categories: quantitative 
model-based methods, qualitative model-based 
methods, and process history based methods. The 
methods developed to detect incipient sensor faults 
presented, e.g., in [1], [5], [6] are based on Bayesian 
belief networks, fault tree analysis and observer-
based fault detection. From the viewpoint of control 
variable sensor discredibility detection, the lack of 
suitable methods involves expensive reconfiguration 
in the search for a cheap and easily applicable 
method. 

In contrast to the common sensor incipient fault 
detection approaches, described i.e. in [2], [3], [4], 
where a prior knowledge about the control process is 
needed, the method presented in the paper provides 
the information about the control variable sensor 
discredibility from the standard process data that is in 
any case acquired and recorded for the control 
process. 

The main advantage of our solution is that 
necessary information about changes of sensor 
properties is obtained from standard operation data; 
it means that no extra measuring points or 
experiments are necessary. 
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Fig. 1. Block scheme of the model-based control variable sensor discredibility detection method 

The aim of our study is to develop a tool which will 
be able not only to detect changes in the control 
variable sensor at their source, but also to warn the 
operator about undesirable side effects. In the case of 
bioenergetic processes, malfunctions can lead to an 
increase in harmful emissions (CO, CO2, NOx). For 
discredibility detection we have suggested a model-
based control variable sensor discredibility detection 
method. 
2 Model-based sensor discredibility 

detection 
The block scheme of the model-based control variable 
sensor discredibility detection method is depicted in 
 [19] The key part of the scheme is the sensor model 
for discredibility evaluation. In most sensor models it 
is assumed that the sensor output is proportionalonly 
to one input, so that the sensor model equation is 

ym = km xest + qm, (1)
where parameter km represents the gain of the sensor 
model, parameter qm expresses the shift factor, and 
xest is the estimated sensor model input, which 
represents the physical (real) value of the control 
variable. The physical value of the control variable is 
not available for us, but we can estimate the value 
from the process data that is acquired for the purposes 
of the information system. This estimation is usually 
based on steady-state data, so that it is important to 
detect the steady state of the process. 

The general requirement for successful 
application is to design the objective function. In 
terms of sensor discredibility detection, this function 
is called a residual function or residuum e. Residuum 
e(t) is obtained as an absolute value of the difference 
between the real sensor output y(t) and the output of 
the model of the sensor ym(t), 

e(t) = |ym(t) – y (t)|, (2)
where the residual variable e(t) indicates the rate of 
variance between the output estimated via a sensor 

model and the value acquired by the real sensor. 
The idea underlying control variable sensor 

discredibility detection consists of two parts Fig. 2. : 
1) Indirect detection of changes in the sensor 

properties via adaptation of the sensor model 
parameters so that the residuum is minimal. Our 
method aims to minimize the residuum using 
evolutionary algorithms (simulated annealing 
algorithm, or standard genetic algorithms); this 
approach was introduced in [9], [10]. It is now 
possible to minimize the residuum using the least 
squares method. The main features of this last 
mentioned approach will be indicated below. 

2) Interpretation of the changes in the sensor model 
parameters (evaluation of the development of the 
sensor model parameters). This decides whether 
the changes have already reached the stage where 
the control variable sensor is regarded as 
discredible. The algorithm of the evaluation 
block can be described as follows: 
a) Initialization stage. At the beginning, when 

the control variable sensor is providing 
correct data, the nominal vector sensor of the 
model parameters is obtained. Based on the 
nominal values of the sensor model 
parameters, the maximum acceptable 
changes for each of the parameters are 
designated (as a percentage of the value of 
the given parameter). 

b) Working stage. When the initialization stage 
is processed, the block provides an 
evaluation of the development of the sensor 
model parameter vector. This means that the 
regression coefficients of the vector 
development are computed. Using the 
extrapolation function, we obtain the 
assumed development of the sensor model 
parameter vector, as well as the approximate 
time until control variable sensor discredibility. 
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Fig. 2. Principle of extrapolation of the development of sensor model parameters and the approximate time until 
control variable sensor discredibility evaluation

If the development of the sensor model 
parameter vector indicates that the time is 
shorter than the given time (usually n times 
the sampling period), the operator is warned 
about this situation.  

3 Sensor discredibility in bioenerge-
tic processes 

The importance of discredibility detection can be 
illustrated by the case of combustion process control. 
Fig. 3. shows an illustrative example of a 
combustionprocess. The aim of the temperature 
control loop is to maintain the heating water 
temperature at the desired value by changing the fuel 
supply; and the oxygen control loop represents 
maintaining the air factor (fuel/air ratio) α at its 
desired value (in an attempt to produce minimal 
gaseous emissions and steady fuel combustion. 

 
Fig. 3. Illustrative depiction of control loops in a 
combustion process 

 
Fig. 4. Impacts of changes in the oxygen sensor on 
the control loop signals  

The influence of changes in oxygen sensor 
properties on the control process is depicted in 
 Fig. 4. It is apparent that when the oxygen sensor 
starts to provide biased data, the oxygen control loop 
reacts to incorrect information about the fuel/air ratio 
by attempting to remove (unreal) the control error. 
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The main loop of the heating water temperature 
control works properly, because it returns the control 
error back to zero. The desired temperature value can 
be achieved at the cost of increasing the fuel supply, 
because the oxygen control loop has changed the 
combustion air delivery, so environmental impacts 
will occur but they will remain unrecognized. 

4 Model-based sensor discredibility 
detection via least squares method  

When the equation expressing residuum (2) is 
supplied by the sensor model equation (1) it results in 
the following equation 

e(t) = | km xest(t) + qm - y(t)|. (3)
From the viewpoint of discredibility detection, 

the real sensor output y(t) and the estimated sensor 
model input xest(t) are given variables. If we apply the 
least squares method to minimize the residuum, it is 
necessary to record the history of the sensor model 
input xest and the real sensor output y so that we obtain 
the required form of the equation to be able to 
evaluate km, qm. This can be solved using Matlab 
software [7]. The algorithms for minimizing the 
residuum using the least squares method were applied 
to detecting oxygen sensor property changes. A 
typical result is depicted in Fig. 5.  Fig. 5.  shows that  

 
Fig. 5. Detection of a step change in the oxygen 
sensor via the least squares method 

the algorithm was able to indicate the oxygen 
property changes, because a development is evident 
in the sensor model gain km. 

5 Sensor discredibility detection via 
statistical methods 

The idea of control variable sensor discredibility 
detection via statistical methods has been motivated 
by statistical methods used to evaluate process 
capability indices Cp and Cpk. Both of the capability 
indices are based on the rule of “6σ”, where σ is the 
variability of the process under investigation  [20]. 

The Cp index measures how close the process is 
running to its given specification limits, relative to the 
real variability of the process. The larger the index, 
the less likely it is that any item will be outside the 
specification limits. 

The Cpk index measures how close the process is 
to its desired value, because the process may be 
performing with minimum variation (value index Cp 
is low), but it can be away from the required value 
towards one of the specification limits, which is 
indicated by lower Cpk. 

Generally, indices Cp and Cpk are given by the 
following equations  

6p
USL LSLC
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−
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min ,
3 3pk
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where USL and LSL are the upper and lower tolerance 
limits of the process variable that are given by a 
norm, a customer etc., x  is the mean value of the 
measured process variable and σ is the standard 
deviation of the process variable (process variability). 
The standard deviation is not available, but can be 
substituted by an estimated value marked as σ̂  by the 
equation [16] 
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where x are values of the process variable and n 
is number of sampled values. 

Graphical interpretations of indices Cp and Cpk 
are presented in  Fig. 6.  and   Fig. 7., respectively. 

In terms of sensor discredibility detection, the 
process variable is the control variable y provided by 
the sensor for which discredibility detection is 
required.  

Sensor discredibility evaluation consists of two 
parts: 
1) Initial stage: specification limits LSL and USL are 

obtained. Specification limits LSL and USL are 
then given by the sensor producer, or can be 
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obtained in the initial detection stage from the control 
variable data recorded at a time when it is assumed 
that the sensor is providing correct data. The limits 
are then given by the following equation 

ˆ3 ,
ˆ3 ,

est

est

USL y
LSL y

σ
σ

= +
= −

 (6)

where yest is the estimated value of the control 
variable and σ̂  is the standard deviation control 
variable data. 
2) Working stage: based on the chosen capability 

index (Cp or Cpk), the value of which is 
continuously evaluated, discredibility detection is 
carried out. The sensor is regarded as discredible 
if the value of the index decreases below the 
given critical value CpCRITICAL or CpkCRITICAL. 

 

6 Conclusions 
The model-based control variable sensor 
discredibility detection method via the least squares 
method has been shown to be a suitable tool. We 
have proved its ability to indicate control variable 
sensor changes together with discredibility 
detection. By this method the operator is informed 
about the estimated time until the occurrence of 
sensor discredibility. If the time is critical, the 
operator also receives a warning about the situation. 
The time to evaluate sensor discredibility was 
shorter using the least squares method than when 
using evolutionary algorithms. 

The idea of statistical sensor discredibility 
detection introduced here will be verified in future 
research. The advantage of the method is that we 
can use the statistical process control (SPC) module 

 
Fig. 6. Graphical interpretation of the Cp index, which indicates whether the process variation is within the 
given tolerance range 

 

Fig. 7. Graphical interpretation of the Cpk index, which indicates whether the actual process average is close to 
the specification limit over the standard deviation 
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for evaluating the capability indices. SPC is available 
in the most of SCADA (Supervisory Control and Data 
Acquisition) software. 

Future research will be directed at optimizing the 
combustion process. An experiment will investigate 
ways of verifying oxygen probe credibility. This will 
be an important step toward non-simulated 
applications. 
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