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Abstract: - In this paper the method of integral equations risppsed for some problems of electrical
engineering ( current density, radiative heat tfiemdieat conduction). Presented models lead Bystem of
Fredholm integral equations, integro-differentiajuations or Volterra-Fredholm integral equations,
respectively. We propose various numerical metljdigeretization method and projection methodsyigliag

to a system algebraic equatio@@mputational results for integral modeling aneegi
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diffusion. It is also used in electromagnetism, for
example in determining selected electrodynamical
parameters in three-phase systems of shielded heavy
In  natural sciences and engineering acurrent busways . The choice of the method in such
mathematical model is generally defined by case is justified, as the distribution of curreensity
differential equations which can be solved usingin phase conductors is obtained by solving a system
mostly: finite-difference method (FDM), finite- of integral equations. The current density distiiiu
element method (FEM), boundary-element methodof a single live conductor described in [5-8] was
(BEM) The choice of calculation method is affected found with the use of geometry of the system. The
by many factors. First of all, it is determined iy kernel of the equation was formulated with the
possibility of an accurate definition of the prable  account of skin effect of phase conductors, their
and regard to the boundary-initial conditions. [#oa approaching, and inducing of eddie currents in the
depends on the system of algebraic equations andhjeld. By such an approach, solutions were ohtiaine
parameters of computer hardware used for carryinghat could be used to analyze electromagnetic
out the task. Unfortunately, the above-mentionedphenomena Occurring in current busways and the
methods are of little avail in determining the @g¢  neighboring space, confining the considerationa to
gradient distribution in electro-insulation systems particular part of the field under investigatior. ito
The integral equation method (IEM) seems to be thethe surface area of one of the live conductors.
most appropriate for this purpose, as electricThe aim of this paper is to present the advantafjes
potential distribution is described with the helb 0 the method of integrai equations (|E|\/|) and the
integral equations [4]. Such formulation of the possibilities of its application to various branshaf
problem, including boundary conditions (potentials engineering, particularly to the problems arising i
for the conductors or their total Charges) leads to power engineering [4] It is an anaiyticai-nurneirica
system of integral equations the numerical solutionmethod and requires great efforts from highly skill
of which makes it possible to determine the chargespecialists (mathematicians, computer scientists,
density distribution of Conducting parts and pa‘a}nt engineers)_ IEM seems to be a natural method,
distribution in the surrounding space . In general, especially in the field of electrodynamics. Thisais
IEM is directly conducive to a mathematical model case of electromagnetic field being described with
described by various classes of integral equatons integral equations, the kernels of which are sestch
indirectly, to a boundary-initial problem of some for by integral transformations in the domain of
differential equations. The method is applied te th space variables, while in the time domain the
theory of heat conduction and to the theory of expected system response has a form of integral

1. Introduction
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formulas. It confines the expected solution vabd f coordinate systems. The currenigt), ix(t),..,in(t)

the whole domain to a predefined part of the spacdlow through the conductors. The magnetic vector
subject to analysis. This enables a considerablgotential A generated by these currents is parallel to
reduction of the size of the system of equations. | the z-axis and independent of z. The conducting
such a case, the minimization of the size of thecylinders are considered to be infinitely long. $hu
systems of equations and the reduction ofthe problem is two dimensional.

computation time, while maintaining the accuracy, J=1J(x vt 1
becomes highly important. A% Y1) (1)
Integral equations, or rather their systems, atenof A=1 AKX y.t) 2)

matched with mathematical models describing the

current density distribution at the cross-sectibmo  Presented problem provides to a system of integro-
working conductor or in the cartridge of an indanti  differential equations (see [5]) and is a geneadiin
heater. The knowledge of the current density of papers [4-7,9] for few conductors in time.
distribution may be a ebasis for determining SomeExampIe 1

electrodynamic values such as magnetic induction or

distribution of electrodynamic forces acting at .
selected points of the conductors. Moreover, some‘a‘S an example we consider the two conductors of

problems of the radiative energy transferare & P=10 mm, d=2,5 mm, and of the conductivity

reducible to a system of Fredholm integral y=56 'MS/m. The conductors carrying the currents
equations. |1(t)=-|2(t')=100*t A. the number of rectangular

We restrict to the following mathematical models in SubsectiondSfor each conductors was equal to 625
electrical engineering: radiative heat transferrant ~ (Nx=Ny=25).

density problems and Fourier's problems. Presented
models lead to a system of Fredholm integral
equations, integro-differential equations and

Volterra-Fredholm integral equations, respectively.

We propose various computational methods
(discretization method and projection methods)
providing to a system algebraic equations

2. Integral modeling in the current
density theory

In [5,7,8] a current density in the conductothwi
rectangular cross-section provides to Fredholm
integral equations of the second kind, which were
solved by discretization method. Presented nurlerica
method is reduced to a system of linear algebraic
equations, can be calculated by various method
( iterative method, Gauss method, Croutte’a methoc
and other methods). The above current density
problem was treated as stationary. In [4,5] was
considered nonstationary problem leading to a
system of integro-differential equations, which by
discretization in time and space provides also to
linear algebraic equations. In this paper we Fig. 1. Distribution of the current density within

generalize these results. Moreover, we give other conductors for t=18 ms
propositions to solve Fredholm integral equations
and integro-differential equations [2]. Remark 1. Current density problems lead to a

We will generalize results of papers [4-7,10]. The system of Fredholm integral equations [6,7] or
nonmagnetic cylinders of arbitrary cross-sectijn respecting time to integro-differential equatiob$, [
(k=1,2,...m, wherem - number of conductors) are which using the discretization can be solved by a
situated parallel to z-axis of the rectangular system of algebraic equations
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3. Fredholm integral equations in the
exchange of the radiosity

The paper [1] presents theoretical foundatians f L(x*x")
the modelling of phenomena related to visualisation L(x%xY
performed by means of computer graphics software
and for the modelling of radiative heat transfer.
Since the equations describing both of these
processes are very similar, there is a possihilfty
applying certain computer graphics programmes to
resolve problems related to radiative heat transfer Fig. 2. lllustration of equation (3).
is explores all necessary supplements making it
possible to  perform  such  calculations. The eqn (3) was written in the terminology used in
Thermokinetics, describing radiative heat transfer;lighting engineering and computer graphics, where
lighting engineering, investigating problems of the concept of Iluminance,L[lm/m?sr] is used,
determination of surface illumination and computer- referring to visible radiation. Thermokinetics,
generated graphics, resolving issues connected witflowever, uses the concept of radiance L [
visualisation (it is the creation of seemingly #hre referring to all optical radiation (including thean
dimensional representations of virtual reality on aradiation).
two-dimensional screen, based on mathematicailhe solution of eqn. (3) for every point of surface
descriptions) — they all examine, to a greater oro..-S under consideration consists of determination
smaller extent, the same phenomena of emission®f luminance of each of these points. This is the
transmission and absorption of optica| radiation basic information, necessary for further constorcti
energy. The similarity of phenomena occurring in al of visual ~images of surfaces examined.
of these cases additionally offers the possibiliy =~ Unfortunately, the eqn. (3) cannot be solved
use similar research tools to investigate themyOnl analytically. Only simulation methods can be
the simplest tasks involving radiative heat transfe ~ applied. A commonly used method is backward ray
lighting engineering can be solved in [1,9] using tracing.
analytical methods. Practically, all more demanding The equation describing heat balance of poffinx
problems in these fields are currently solved usingSiegel and Howell [8] has a form that is similar to
numerical methods or by means of modelling and(3), as given below :
simulation: (see [1,9]). It thus seems interestiog
adapt such sophisticated computer graphics software Per (x°,7,6,0) = pe(x°,T,0,0)
to solve very complex problems involved in radiativ
heat transfer. 2
Contemporary advanced computer graphics softwargynere, in radiative heat transfer terminology p
and interior \_/|suallsat|.on appllcat|ons are based 0 gtands for surface density of effective radiant
the visualisation equation given below: intensity (radiance) of poin®n the direction of ¥

o.1)_ [0 .1 0,1 0.2 1) [v2 1)y2 3 defined by anglesf( ¢); T represents temperature
L(X X )_g(x 'x)%Le(x X )+£-_[p(x X )L(X i )dx ) and the ir)lldexg‘in’ c(o(r[:)cerns iFr)lcident radiaﬁon. The
eqgn. (4), when only diffuse radiation is consideiied
simplified to a system of linear equations, solved
(when the number of points is limited) using exact
methods (e.g. matrix methods) or approximate
methods. When taking into account both diffuse and
specular reflection, the eqn (4) is solved applying
simulation methods, usually radiosity method.
However, this method calls for considerable
computer resources (memory capacity and the
number of calculations), which is a significant
limitation in the case of radiative heat transfer
systems which are geometrically more complex.

+ [p(x°.0,0.011. 0 )P (X, T},81y @) cosdes (4

where L(Xx") is luminance of point% the total of
luminance of radiation emitted (x°, x%) and
reflected (integral value) in the direction of ploi;
g0, xb) - factor dependent on the geometry of the
system, defining the "visibility” of point Xrom >’;
p(x°x°x") — specular reflectance of radiation for
point », with radiation propagating from the
direction of point X and reflected in the direction of
x'. Integration is performed along the whole
hemisphereQ surrounding % This is illustrated by
figure 1.
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In practice, we restrict our considerations to the
Remark 2. Presented problem lead to a system oforthonormal bases. Then we get the following
integral equations of the Fredholm type, which by system of linear algebraic equations
the discretization method can be reduced to armsyste n :
of algebraic equations[1,2,9]. Moreover, Fredholm C = fic + Zcimkjm,ik (k=12..n) @®
integral equations are particular case of integral bt

equations arise in the Fourier’s theory [3,4,6]. where

fu = J.OT .[M f (%, t)e, (< (t)axalt

4. Integral equations in the Fourier's

theory Ko =, [, U [ Kxtys)g, (y)tﬂm(S)dde}@ (X (t)dxdit:
We consider the intetgral equations of the mixee typ Theorem 1
u(x,t) = f(X,t)+”k(x,t,y,s)u(y,s)dyds (5) Let {¢,}.{w,.} to be orthonormal complete
or shortly oM systems in the spaces L?(M) and LZ[O,T],
u=f + Ku (6) respectively. If f OL*(D) and kOL2(Q), then

system (8) is uniquely solvable and the sequence

which_ generalize Volterra and F_redholm integral defined by formula (7) converges to unique solution
equations. The presented equations play a very

important role in electromagnetics. These equationsOf equation (5) in the spack (D)
arise in the heat conduction theory. Some initial- . )
boundary problems for a number differential partial "€ Proof is similar as in the case of the Freahol
equations in physics are reducible to the aboveintegral equation and it is based on the Fourigese
integral equation. Consider this equation in spacelneory.

time, whereg is a given function in the domain ) ) )
D=Mx[0,T] ( M is a compact subset afr 'The presentgd method we illustrate in the follavin
dimensional Euclidean space) ands anunknown integral equatlont .

function inD. The kernek is defined in the domain ulxt) = f(xt)+ [ [ k(xt y,shu(y.s)dyds tO[or] ©)
Q={(xt,y,s):xyOM,0<s<t<T}. using in (3.3) as a basis the orthonormalized

3.1. Galerkin method Legendre polynomials.

Classical Galerkin method for integral equation (5) Example 2

leads to approximate solution of the form Consider equation 9 with
- 4 2
u, (xt)=>"c, x; (x.t) k(x,y,t,s) = x?t%e® and f(x,t)= xz(e ‘ _§t3j'
i=1
where{,vj} is the orthogonal basis in the space E‘

5 o _ x <! o.C 02 [04] 0. 0.8 1.C
L?(D). Because it is difficult to define such a systerl—JoT 951961 208961 71,0|.1273e] .3487e] .2317€]
we propose the following formula -0.6|.9625e .2093e] -0,6 | .1270e .3480e .2315¢]

- -0.2].9685e- .2146e- -0,2| .1266e- .3432e-{ .2300e-
(xt)=> cia(xh (t). (") |0z o685el .2146e] 0,2 | .1266e] 3432¢] 23008

i,k=1
where {¢i},{ k} are orthogonal bases in spaces
LZ(D) and L2[0,T], respectively.
Coefficientsc, (i,k=1,2,...,n)are determined by the Table 1. The relative errors for n=6

0.6 | .9625e1.2093e- 0,6 | .1270et .3480e- .2315e
1.0 | .9619e7.2089¢e- 1,0 | .1273et.3487e- .2317e-

orthogonality condition in.?(D) of the form

n 2 5 6 7
(5nlﬁ¢’k) =0 ('vk =1,2,.--,n), E | .337e-3| .163e-4 66566 328e-7

where

£y = Uy~ —Kuy, Table 2. Dependence of average relative erroes of
is a deviation function. number of basic functions.
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Example 3 n
In equation (9) we takek(x,y,t,s)=e"x?, uy (x.t) = kZ:;,uk (t)p (x). (14)
f(x,t)=et? _g NS where .
n | 4 5 6 7 u(t)= 1, (0)+ D [ [&, (. 5)8, (vu, (v, s)dydls (15)
E .506e-2 | .549e-3 | .615e-5 | .344e-8 iFlom

k=12..,n

Table 3 Average relative errors
By orthonormality of {¢,}) we obtain the Volterra

In this section we propose a projection method fo  u,(t ijjk t,s)u (s)ds, k= 1,2,...,n. (16)
equation (5) leading to solve a system of Volterra i=10
linear integral equations. Approximate solution of From assumptions and Volterra theory it follows,
(5) we seak in the form this system has unique solution {Uk} in
n
xt):Zaj (t)¢j(x) (10)  space?[0,T| such that uk(t)zak(t) for every
- k=12..,n

for (x,t)0D, D=M x[0,T], where:
- {¢j} is an orthonormal and complete basis in W Equations (11) we can rewrite in the operator form

L2(M); u, = f, +K.u,, (17)
- {aj} is a solution to system of the following where K, is Volterra-Fredholm integral operator of
Volterra integral equations form (6) determined by kernd{, (13).
kZ;-([k’k tsJay(skis: - Theorem 3
K,j=12..,n, If fO0L3(D) and kOL?(Q), then sequencdu,}
where f; and k, are Euler-Fourier coefficients defined by formula (10) converges in the space

LZ(D) to unique solution of equation (5) and the
estimate error
=t = o b = oy # o)

Theorem 2 holds with
If fOL*(D) and kOL?(Q), where B
Q={(xt,y,s):0<ss<t<T;x,yOM}, then “
function (10) is a unique solution in the space Proof. Subtracting(17) and (6) we get
L2(D) of the equation

respect to orthonormal syste{mj} for functionsf
and k, respectively.

_ K)—lu and g, =|k, K| o

t u,—u=f - f+(K,-K)u, +K(u,-u).
u, (xt) = f,06t)+ [ [k, (xt, y,s)u, (v.s)dyds, (12) ~ Hence

Hun _UHLZ(D) =\ = K)_IHM fo = fHLZ(D) +Hkn - kHLZ(Q)HunHLZ(D)J’

with
f (X t) = Zn: f, (t)¢k (X) From [2] we obtain the following estimate

R |
c=fo-w|s 2,

0 !

k=1

xtys:iZk]k (x)p(y). (@@3)  where

j=1 k=1

Proof. Putting (12) and (13) to (11) and using linear K 2oy {Ij[jjk XLy, S)dde]d)dt} :

independence of syste{;tk} we get , omLom . . .
Using the theory of Fourier series and properties

Lebesgue’a integrals we have
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F2(t) =] f.(2)- f([t)||iz(M) ~ 0 for everytO[0,T]

and

N R
Similarly
i (G1.658) = K(LLES) 2 pazun) — O

and

8, = [y ~K]3q) O 1TT ~ 0.
Then we get

”un _u||L2(D) ofy-o.

To obtain an error estimate let us notice

where

||un||L2(D) = "Un B u||L2(D) +||U||L2(D),

forevery 0<s<t<T

u=(I -K)™f is a unique solution of equation (5).
By the above considerations we have

”Un - u||L2(D) = Cl“ fn - f||L2(D) + 5n||un||L2(D)]S

< | fy = (o) + COullun = U] 2 p) + €[] 2,

From here we get estimate.

Presented

theory is

illustrated by Legendre’a
ponnomials{Pj} in the orthonormalized form
ﬂ(x)z”&_

Lz(—1,1)

(1@ is complete system inL%-w)). Functions
i (-11)

a; (j=12...n) being a solution

Volterra integral equations (11) are calculatechiy
the Newton-Cotes quadrature.

Example 5

Aproximate solution of the integral equation
— Xt 2 tet 2 \-SY,
= - +
u(x,t) e’ —2x°t .[OJ._lx e u(y, s)dyds

Remark 3. By comparison examples 2 and 3 we get
better results for the modern Galerkin method. The
best results we obtain for3 or n=4.

4. Conclusion

In this paper we restrict to the following
mathematical models in electrical engineering:
radiative heat transfer, current density problemd
Fourier's problems. Presented models lead to a
system of Fredholm integral equations, integro-
differential equations and Volterra-Fredholm intdgr
equations, respectively. We propose numerical
methods (discretization method and projection
methods) providing to a system algebraic equations

References:

[1] Jaluria Y., Torrance K.E.Computational heat
transfer Hemisphere Pub. Co.: Washington, 1986.
[2] Hacia L., Domke K., Fredholm integral
equations In the radiative heat transfer problems
Academic Journals — Electrical Engineerit@,
2006 115-123.

[3] Hacia L., Computational methods for Volterra-
Fredholm integral equations, Computational
Methods in Science and Technologyol 8, No 2,
2002, 13-26,.

[4] Hacia, L. Some integral mathematical models in
electrotechnicsComputer Applications in Electrical
Engineering-Monograph 1(2004),106-123, WPP,
Pozna

[5] Hacia L., Patecki A.,Analysis of the current
density in the conductor by integro- differential
equations, VIII Conference on Applications of
Computers in ElectrotechnicBozna/Kiekrz 2003
159-162.

to system of g Hacia L., Nawrowski R.Numerical methods for

is proposed by the presented methochfot h=0,1

%/ t 0,2 0,4 0,6 0,8 1,0

1,0 | 0,2833e-4 0,0035 0,00214 0,080 0,02}35
0,6 | 0,1020e-4] 0,00012| 0,0001f _ 0,0265 0,00§07
02| 01131e5] 0,5804e-4  0,00020  0,00096 0,00240
02 | 05585e-5| 05567e-4  0,00028  0,00088 0,0d216
0,6 | 0,3000e-4] 0,8005e-4  0,00036  0,00104 0,0q231
10 | 0,6409e-5| 0,00017| 0,00078  0,00497 0,00k11

4. Table of relative errors

integral equations in the heat conduction theofy
electrotechnicsComputer Applicationgn Electrical
Engeenering, Monograph 2002, 60-78.

[7] Nawrowski R., Pabian JObliczanie rozkfadu
gestasci prqdu w przewodach metod rownai
catkowych FredholmaVIl Konferencja Naukowo-
Techniczna - Zastosowanie Komputeréw w
Elektrotechnice”, Pozrd#Kiekrz 2002, 183-186.

[8] Nawrowski R., Pabian J., Tomczewski Ahe
use of object-oriented software for computation of
current density distrubutionAcademic Journals —
Electrical Engineering2, 2006 131-144.

[9] Siegel. H.,Howell J.R.Thermal radiation heat
Transfer Mc-Graw Hill Book Co. New York, 1972.
[10] Szymaski G., Zastosowanie metod catkowych
w elektrodynamice technicznéVPP, Rozprawy nr
144, Pozna 1983.



