
A Workflow based Academic Management System using Multi Agent
Approach

SYED IMRAN JAMI and DR. ZUBAIR A. SHAIKH

Department of Computer Science,
National University of Computer & Emerging Sciences (FAST-NU),

On National Highway, Karachi
PAKISTAN

imranjam http://khi.nu.edu.pk/static/imranjami

Abstract– This paper deals with the automation of academic processes using workflow management systems. Current
available workflows create lot of network traffic which leads to increase in network latency. The solution to this
problem is to integrate mobile agents with workflow systems. Many researchers proposed and developed such
systems but none of them consider the scenario of academic institution which has some unique features that no one
showed. We in this paper propose a framework for a multi-agent based academic workflow system using Java based
Aglets and XML for data representation. It uses Java Rule Engine API (JSR 094) to implement academic rules and
policies of university.

Keywords: Multi agent system, academic management system, workflow model, intelligent systems,

1. Introduction

1.1. What is Work flow?
Workflow Management Coalition in its latest version
defines workflow as:

”The automation of a business process, in whole or
part, during which documents, information or tasks
are passed from one participant to another for action,
according to a set of procedural rules.”

Workflow systems deal with the automation of
business process based on ruleset. A data set or work
space is created, and is processed in stages at different
processing points to meet business goals. All these
activities are coordinated using workflow engines.
Workflow engines can involve interaction either with a
user or might be executed using machine resources.
The automation provides huge increases in efficiency
and avoid long queue delays at different processing
points.

1.2. What is Work Flow Management Systems?
[1] provides a classic definition of Workflow
Management Systems. It states:

“A system that defines, creates and manages the
execution of workflows through the use of
software, running on one or more workflow
engines, which is able to interpret the process
definition, interact with workflow participants and,
where required, invoke the use of IT tools and
applications”.

It also reported some advantages in implementing this
system.

1. It can execute many activities in parallel
which leads to reducing the time taken to
handle each application and improving
customer service.

2. The supervisor is only required to handle
exceptions which lead to take extra burden
from him because decision making is now
automated.

Many workflow systems are currently available
that are open source as well. These workflows lack
some issues that [2] reported. Some of them are to
provide systems that are scalable, have high
availability, are easy to manage, and that can manage
security sufficiently. In case of dynamic changes in
rules and policies they require changes in whole
system.

1.3. What are software agents?
Researchers [2, 3, 4] working on software agents
defined it as programs that assist people and act on
their behalf. This agent can be static or it can be
mobile. If an agent is stationary, it executes only on
the system where it begins execution. Such agents can
communicate with agents on other systems using RPC
or message passing system. If an agent is mobile then
it can execute on any system and can transport itself
from one system to another. Such agents transfer itself
as objects containing code with data that are
autonomous with the ability to perceive, reason and
act. It has a mechanism for operating or drawing

Proceedings of the 11th WSEAS International Conference on COMPUTERS, Agios Nikolaos, Crete Island, Greece, July 26-28, 2007 202

mailto:imranjami@acm.org
http://khi.nu.edu.pk/static/imranjami

inferences from its knowledge and can interacts with
other agents [4].

1.4. Agents for Workflow systems
In order to support a flow of information software
agents with mobility support will be useful here,
because it will provide autonomy to the activity. The
mobile agents will carry the information and the task
they need to perform throughout the organization
without involving human users. [3] reported seven
different reasons for using mobile agents. These are:

1. They reduce the network load.
2. They overcame network latency
3. They encapsulate protocols
4. They execute asynchronously and

autonomously
5. They adapt dynamically
6. They are naturally heterogeneous
7. They are robust and fault tolerance.
Current workflow systems that are available

commercially are running in different organizations.
We, in this work considered two well known
workflows namely, IBM Lotus Domino and
TransparentLogics LogicBase studio. Both of these
software are considered as state of art tools for
managing and monitoring information workflows but
both of them lacks agent based system for interacting
with systems.

2. Related Work
In designing multi-agents based workflow system,
people and labs [4, 6, 7, 8] worked on area that
integrates workflow systems with mobile agents but
these systems do not considered the unique features of
academic institute’s environment.

[4] presented a gluing-framework for integrating
workflow processes with software agents. It proposed
this framework to support cooperative software
engineering processes in a better and more flexible
way. The paper claimed that existing workflow
systems are suited to model and support the CSE
processes that are structured and repeatable, while the
multi agent based systems are to model and support
dynamic and cooperative processes that may involve
some negotiation as well.

[6] presented an agent-based cross-enterprise
Workflow Management System (WFMS) architecture
which can dynamically integrate the workflows and
compose a workflow execution community
customized to different workflow specifications. The
paper combines agents with workflows to effectively
integrate cross- enterprise workflows. It claims that

current workflow technologies are unable to cope with
dynamic interactions and interoperability which is
what an agent can provide. This work is helpful in
B2B e-commerce systems.

[3] presented a workflow for office systems that
independently manage workflows and personal
schedules. It claims that existing workflows cannot
provide this feature because of resource constraints.
The “WorkWeb System” of this group is an expanded
workflow system that is able to manage and control
office resources. This work is done for organizations
that have distributed structure.

Savarimuthu et. al. [8] presented a multi-agent
based information workflow that monitors and
controls the business processes. It also develops a
framework for an adaptive and distributed agent based
workflow system JBees, which is used to monitor and
control the system based upon the data obtained
through simulation. The work is proposed for
businesses that have dynamically changing
environment. The commercial systems for Workflow
management lack controlling of the process model
using agents. This makes them vulnerable in case of
dynamic changes in rules and policies.

The models proposed by different researchers [4,
6, 7, 8] however integrate agents with work-flow
systems but none of them considered the unique
environment of academic institutions.

3. Our System

3.1. Current Scenario
The academics department of FAST-NU, is
responsible for two jobs - examination and registration
process. The examination process is simple and do not
require automation. The registration process since last
year follows some automation but it lacks the proper
workflow environment. The current process works as
follows:

Before the beginning of a new semester the
academic department issues a list of courses offered in
the semester. The offering of the courses is online
process and each student needs to select the courses as
per their choice. After selecting the courses they
submit the request to academic department which is
also an online process. Students are then required to
print the request form and submit it to the respective
faculty advisors. Upon receiving the forms, faculty
advisor checks the courses for registration. The
advisor then check the request for its success or failure
based on the past performance of student by seeing its
past grades, pre-requisites and GPA. This is an online
process. If a student does not qualify for a course he

Proceedings of the 11th WSEAS International Conference on COMPUTERS, Agios Nikolaos, Crete Island, Greece, July 26-28, 2007 203

needs to select another course(s) and starts the whole
process again. If he passes, then advisor returns the
form to the student with his seal and signature. Student
takes this form to the accounts department for the
payment of fees and other dues.

Accounts department upon receiving the fees
return the form to student with its signature and seal.
The student will then submit this form to academics
department which after seeing approvals from
concerned departments finalize the registration process
using online software. After finalizing this process
students are given one week time for add/drop course.

Three people/departments are involved in this
exercise - Academics, accounts and advisors.
Although the major process of registration is online
but due to the active involvement of (human) the
process took time with extra delays due to too much
requests.

3.2. Our Approach
The above scenario shows that academic system
differs in structure as compared to B2B or ecommerce
organizations. First, it does not require to interact with
outside system unlike other organizations which
involves heterogeneous systems. Second, departments
provide services to the students just like in public
utility companies.

Figure 1: Current Scenario

Third, in utility companies, customers can come from
any domain whereas in academics ’customers’ are
from closed domain - our students. Last, academic
rules can be changed dynamically or it may be
possible that different faculties may not want to
implement same rules, thus require a rule repository
with rule engine for their system.

The typical scenario shown above, require strong
’mobility’ of student to disseminate information

among different processing points. Moreover current
system cannot process multiple requests
simultaneously which leads to immense delays in
registration. It also involves department supervisors to
act as an interface between students and systems. This
system also faces problem in implementing changes in
rules and policies. With the proper workflow systems
such problems can be removed by automating
academic process.

The commercial systems for Workflow
management lacks controlling of the process model
using agents. The models proposed by different
researchers integrate agents with workflow systems
but none of them considered the unique environment
of academic institutes.

The proposed system is working as follows:
There are four agents in this system – Academic agent
to work as academic supervisor, Advisor agent to work
as faculty advisor, accounts agent to work as an
accounts supervisor. Student agent to work as a
student, which is mobile and requires to interact with
these three agents.

1. Student (human) first selects the required courses

issued by the academic department and submit the
request.

(a) This submission actually invokes ’Student
Agent’ in the workflow system that delivers this
information to the academic department.

2. At academic office, ’student agent’ interacts with
’academic agent’ for submitting its request.

(a) ’Academic agent’ first checks the status of the
courses that include cap requirements, clashes
with other courses etc.

(b) If a student (agent) qualifies initial requirements
then it replies to the student agent to go ahead to
advisor.

(c) Upon receiving the success message from
academic agent, student agent then proceed to
Advisor.

3. At faculty advisor’s office, ’Student agent’
submits its request to advisor, by interacting with
’Advisor agent’.

(a) ’Advisor agent’ checks each course request by
checking the student’s past performance, GPA,
Grades and successful completion of pre-requisite
courses.

(b) If a student (agent) qualifies for registration, it
replies to the student agent about its decision.

(c) Upon success or failure, student agent then
proceeds to accounts department.

4. At accounts department, ’student agent’ submits it
requests for those courses that are allowed by
advisor agent.

Proceedings of the 11th WSEAS International Conference on COMPUTERS, Agios Nikolaos, Crete Island, Greece, July 26-28, 2007 204

(a) ’Accounts agent’, checks the past dues if
required to pay by the student (agent). It
replies the student agent to pay additional dues
for successful registration of courses.

(b) This agent then calculate the total fees
required by the student to pay for those
courses that are allowed by advisor agent.

(c) ’Accounts agent’ is responsible for informing
students about the amount payable by students
using automated email.

(d) Upon receipt of payment by accounts
department, ’accounts agent’ notify pending
’student agent’ to proceed back to academics
department.

5. Academics department then update the states
provided by the receiving student agent. The
registration process gets completed here. Each
agent has an access to the rule repository that
contains rules and policies of university for the
students.

3.3. Implementation Details
Several technologies are available to implement the
proposed architecture. Two well known agent
architectures are: FIPA and MASIF. FIPA do not
provide mobility support in its standard whereas
MASIF which is endorsed by OMG provides strong
mobility support in its standard. Most of the agent
systems are developed on Java environment. [2]
reported this trend because of Java’s support for
platform independence, secure execution, dynamic
class loading, object serialization and multithreaded
programming.

We, in this work, use MASIF based Aglets that are
Java objects move from one host to another [2]. This
object can take the program with its data. Mobile
agents using Aglets is useful in distributed applications
where processing is migrated toward resources [2].
This type of paradigms useful for academic
applications where immediate results are required on
low bandwidth network. Aglet is considered as the
shorthand for agent plus applet. It provides an
infrastructure framework for building mobile agents
based distributed applications.

Aglet is a java-based internet agent. It provides the
functionality of creation, dispatch, migration and
termination of agents on low bandwidth network
because it uses a technique called serialization to
transmit data on the heap and migrate the interpretable
byte-code [2].

Figure 2: Our Agent based system

Academics

Academic
Agent

Advisor

Advisor
Agent

Accounts

Accounts
Agent

Courses Request Student Agent

Student
A

gent

Student Agent

Fees paym
ent

Student Agent (to Academic Agent)

In our implementation framework Fig 3 the Aglet

layer works in the same way as used in its architecture.
It has the following components: an aglet viewer
named tahiti that provide context to the agent, an aglet
server and finally aglets themselves that are interacting
with it. Aglet viewer is in many senses an applet
viewer. It allows to create, retract, activate, deactivate
and dispatch aglets. It contains a network daemon that
listens for incoming aglets. It also has a security layer
that protects the host from malicious agents Aglet
server can host large number of aglets with large
amount of data or computing resources.

On dispatching ’student’ user aglet, each aglet
carries XML data (state) and code for processing as an
itinerary that is input by student. Student Aglets visit
several hosts shown in our implementation, perform
necessary communication with respective aglets at
each host for computation and finally carries the result
back to ’Academic’ aglet for updation. Each host has
its own aglet server and connected with centralized
database. The student side of the application on
submission of application on XML page will dispatch
’student’ aglets to ’academic’ aglet servers. The
academic aglet server dispatches ’academic’ aglet that
communicate with ’student’ aglet to exchange required
information as shown in previous section. Getting
results from academic agent, student aglet then
dispatch to advisor aglet server which then dispatch
’advisor’ aglet. It exchanges required information with
each other and on getting results (permission etc.)
from advisor agent dispatch to account aglet server.
On receiving request from student aglet, account aglet
server dispatches ’account’ agent and they interchange
information with each other. Finally student aglet

Proceedings of the 11th WSEAS International Conference on COMPUTERS, Agios Nikolaos, Crete Island, Greece, July 26-28, 2007 205

dispatched to academic aglet server which stores
information in student information system.

Each agent (student, advisor, academic and
accounts) is represented by identifier of agent which is
globally unique and immutable throughout the lifetime
of the aglet. At each unit aglet is dispatched to a
destination instead of retracting it from a location.

Figure 3: Implementation Framework

The communication layer of our framework deals
with the interface among different aglets with each
other. The aglet supports an object based messaging
that is location independent, extensible and
synchronous/asynchronous [2]. Aglets use message
passing paradigm for communication supporting
unicast, multicast and broadcast paradigms. In our
framework, the communication layer provides
interface among aglets using unicast message passing
because message sender (e.g. student) know the
identity of the receiver (e.g. advisor). This framework
ensures parallel execution which is required in our
system so that multiple students can submit their
applications simultaneously and multiple supervisors
(academic, advisor and accounts) can respond to their
requests.

The aglet creates a student aglet for academic host.
The student aglets are dispatched one by one to
academic host. Similarly, on receiving student aglet by
academic aglet server, an academic (or advisor,
account) aglet is created for each of them one by one.
For data representation we propose to use XML to
represent information about students in the
architecture. The major reason to use this for data is
the availability of tools in Java to support XML.
Markup languages are nowadays widely used in online

data manipulation based systems. Most of the agent
based systems[4, 6, 7, 9] use these languages in their
architectures due to interoperability.

XML is considered as the most state of art
technology in this area. [10] in his article reported
several reasons to use this language for data
representation.
• It is straightforward to use XML over the Internet.

Users can view XML documents as quickly and
easily as HTML documents.

Aglets Layer

Java Runtime Engine

Student
Agent

Academic
Agent

Accounts
Agent

Advisor
Agent

XML Layer

Communication Layer

Rule Engine

• It supports wide variety of applications for
authoring, browsing, content analysis, etc.

• It interchanges structured documents over the web
based system.

• It is easy to program for processing XML
documents.

It is found that most of the agent based data
processing systems use XML for data manipulation
tasks due to similar reasons.

In existing scenario student communicates with
department’s supervisors using physical forms. In our
agent based system, forms are used for interaction of
students for selection of courses etc. In todays
interactive web based applications forms are an
important part of the applications. XML in its
framework provides XForms for getting users input.
The XForms give the separation of the data being
collected from the controls which makes it tractable by
making it clear what is being submitted where.
XForms have many benefits over existing HTML
forms. The ease of submission process to XML helps
in marshaling the submitted data to the application
back-end. The received XML instance document can
be processed directly by the application back-end.
XForms also separates content and presentation.

Aglets is based on Java, XForms can easily be
developed on Java. XForms will capture responses
from student, advisor, academic and accounts and
these reponses are required to transmit using Aglets.

All rulesets are specified in XML resource file. This
file contains list of rules that can be accessed by aglets
through Java. Issues like restricting students from
registering in a course (due to low GPA or attendance
etc.) are implemented by XML representation of rules.
To access and extract rules, Sun Java provides Java
Rule Engine API specified in JSR 94 [11, 12] for
parsing rulesets that are represented using XML. In
Fig 3, the layer of rule engine handles this working. It
can interact with XML layer to extract the rules and
with Java runtime engine for API. Aglet access the
XML rule repository using Java rule engine. Java
runtime layer provides this access. Rule engine
evaluates and executes rules which are specified in
XML as if-then statement. This layered architecure

Proceedings of the 11th WSEAS International Conference on COMPUTERS, Agios Nikolaos, Crete Island, Greece, July 26-28, 2007 206

[Fig 3] seperates implementation details of workflow
with rulesets that enable our system to adapt itself with
dynamic changing without any modification in source
code.

JSR 94 provides Rules Administrator API [11]
which is defined in the javax.rules.admin package, to
load rules and associated actions as execution sets.
Rule Execution set is a collection of rules. It is loaded
from XML file. The API provides authorization by
defining the permissions on execution sets. The
’advisor’ and ’academic’ agents are authorized to
access this file.

4. Conclusion
The paper proposes to use Aglets platform for
interaction among agents while XML for data
representation. Use of Aglets is due to its support for
mobility which is required in our problem. It is to be
mentioned that Aglets provide weak mobility. There
are some more platforms, that offer strong mobility
one of which is popularly known as Grasshopper [5].

JSR 094 defines generic API support for parsing
rulesets represented in XML but it does not define any
standard. Research is going on to develop simple rule
markup language (SRML) for standardization [12].
With our layered architecture, the system can adapt
dynamic changes easily and efficiently without
changing source code. Any change can be
implemented in XML rule repository without
disturbing Aglet and Java. This makes our system
robust in a changing environment which other systems
can not provide.

This work assumes that all academic process is
carried out under one roof, however recent trends in
educational sector suggest that many universities have
campuses in different locations. Further extension of
this idea can be made by making it available to all the
campuses of the university. The use of agents in
workflows will make WFMS scalable to many
students and extensible for multi-campuses.

References:
[1] Gerhard Weiss, Multiagent Systems: A Modern

Approach to Distributed Artificial Intelligence,
The MIT Press, 1999

[2] Danny Lange and Mitsuru Oshima, Programming
and Deploying Java Mobile Agents with Aglets,
Addison Wesley - 1998.

[3] Rob Allen, “Workflow: An Introduction”, Open
Image Systems Inc., United Kingdom, Chair,
WfMC External Relations Committee

[4] Alf Inge Wang, “Using a Mobile, Agent-based
Environment to support Cooperative Software
Processes”, Ph.D. Thesis, Norwegian University
for Science and Technology, February 5, 2001

[5] IKV. GrassHopper – The Agent Platform. web:
http://www.ikv.de/products/grasshopper/

[6] Liangzhao Zeng, Anne Ngu, Boualem Benatallah
Milton O’Dell, “An Agent-Based Approach for
Supporting Cross-Enterprise Workflows”,
Proceedings of IEEE, 2001.

[7] Hiroyuki Tarumi, Koji Kida, Yoshihide Ishiguro,
Kenji Yoshifu, Takayoshi Asakura, “WorkWeb
System - Multi-Workflow Management with a
Multi-Agent System”, Proceedings in ACM 1997.

[8] Bastin Tony, Roy Savarimuthu, Maryam Purvis,
Martin Fleurke, “Monitoring and controlling of a
multi-agent based workflow system”, Australasian
Workshop on Data Mining andWeb Intelligence
(DMWI 2004), Dunedin. Australian Computer
Society, Inc 2004

[9] Alf Inge Wang, Reidar Conradi, Chunnian Liu Y,
“Integrating Workflow with Interacting Agents to
support Cooperative Software Engineering”,
Norwegian University of Science and Technology,
(NTNU), N-7491 Trondheim, Norway.

[10] Norman Walsh “A Technical Introduction to
XML”, http://www.xml.com

[11] Qusay H. Mahmoud, “Getting Started With the
Java Rule Engine API (JSR 94): Toward Rule-
Based Applications” July 26, 2005 web:
http://java.sun.com

[12] “Simple Rule Markup Language (SRML)”,
Technology Reports,
http://xml.coverpages.org/srml.html

Proceedings of the 11th WSEAS International Conference on COMPUTERS, Agios Nikolaos, Crete Island, Greece, July 26-28, 2007 207

http://www.ikv.de/products/grasshopper/
http://www.xml.com/
http://java.sun.com/
http://xml.coverpages.org/srml.html

	
	1. Introduction
	1.1. What is Work flow?
	1.2. What is Work Flow Management Systems?
	1.3. What are software agents?
	1.4. Agents for Workflow systems
	2. Related Work
	3. Our System
	3.1. Current Scenario
	3.2. Our Approach
	3.3. Implementation Details

	4. Conclusion

