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Optimal Calibration of an X-Ray Detection System
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Abstract: The calibration of an X-ray detection system for automated baggage inspection is modelled as a
parameter estimation problem on a nonlinear state space. Properly taking into account the manifold structure
of the state space, a calibration algorithm with extremely good convergence properties is derived.
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1 Introduction

We discuss the problem of calibrating a detection sys-
tem made up of a number of individual detection de-
vices each of which consists of a ray-emitting source
and a detector made up of a row of CCDs. If a rigid
body with a number of landmarks passes through
such a detection device, both the times at which the
individual landmarks show up in images and the re-
sulting image coordinates can be measured. The task
is to deduce from these measurements the locations
of the sources and the locations and spatial orienta-
tions of the detectors. Moreover, we want to assess
the accuracies of the parameter estimates obtained in
terms of the (assumed) measurement accuracies and
also of the body-referenced landmark coordinates if
these cannot be assumed as perfectly known.

2 Detection System Model

Assume that a ray-emitting source is located at a
point p and that an associated detector is centred at
a point ¢ (where the word “centred” has no specific
geometric meaning; g is just a reference point or ori-
gin on the detector). Next, denote by d := g — p the
vector from the source to the centre of the detector
and by e the unit vector specifying the direction of the
detector. We extend e to a right-handed orthonormal
coordinate system (g1 | g2 | g3) by letting

g1 = €
—d+{d,e)e
93 = 77
(1) [—d +(d, e)e]|
B y B dxe
g2 = g3 X g1 = 4||d><e||’
note that |—d + (d,e)e|| = ||d x e|| = ||d||2 —{d,e)2. If

a landmark located at a point a can be detected, then
the ray from p through a intersects the plane through
g spanned by g; and go; thus there are real numbers

A > 0, v and v such that the equation p + Aa — p) =
q + ug1 + vgs holds, i.e., we have

(2) ugr +vgs = p—q+Aa—p)
(where u and v are the horizontal offset and the ver-

tical offset of the landmark image from the origin of
the detection device and where necessarily v = 0).
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Figure 1: Detection device with linear detector.

Taking the inner product of (2) with g; we find that
0= (p—gq,g3) + Ma — p,g3) and hence that

<dv g3>
(a—p,gs)

(@ —p,g3)

Taking the inner product of (2) with both g1 and g
and plugging in (3), we obtain the equations

(d,g3){a —p,g1) — (d,01){a — p, g3)

() (@ —p,g3)
(d, g3){a — p,g2) — (d,92){(a —p, g3)

(@ —p,g3)

v =
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which we can rewrite in the form

y - tdx(a=p)ga) _ (a—p,g2xd)

(5) (a —p,g3) (a—p, g3)
, - —tdx(a=p)g) = —{a=p g1 xd)

(a —p,g3) (a—p, g3)

using the Lagrange identity (a x b,c x d) = {(a, c)(b,d) —
(a, d)(b, c). The condition v = 0 implies

(6) (a—p,g1 xd) = 0.

In the next section the measurement equations will be
derived for the special situation that a rigid body with
identifiable landmarks moves along a conveyor belt
and passes through the detection system considered.
In this case we fix a space-fixed reference coordinate
system (eq, es, e3) in which ez is the direction of the
motion.

Figure 2: Reference system and moving landmarks.

3 Measurement Equations

Assume that a rigid body (such as a suitcase) moves
along the conveyor belt with constant speed s. We
fix a body-fixed reference point and a body-fixed co-
ordinate system (a, b) on the bottom side of the body;
moreover, we denote by ¢ the angle which a makes
with es, so that

(7)

a = cospesz+sinpe,

b = —singes+cospes.
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Figure 3: View from top.
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Next, we fix a reference time and denote by ayr =
Zrer€1 1+ zrefes the space-referenced coordinates of the
body reference point at this time. We now consider
a landmark whose body coordinates are given by the
distances A and B and its height H; then the spatial
position of this landmark at the reference time is given
by ap =aret + A-a+ B-b+ H - es, i.e., by

Zret + Asing + Bcosg
(8) ag — H
Zref + Acos — Bsingp

Consequently, the landmark position at the time of
detection is a = ag + tse; where s is the speed with
which the conveyor belt moves and where, due to (6),
the detection time ¢ is determined by the condition

(9) 0= <Cl0 —Dp,01 X d> + t$<€3agl S d>

and hence (writing e = g;) is given by

. (a0 —p,exd) _ _{(ao —p) x d, €)
s{es, e x d) sles x d,e)
(10)
— _—<(a;<e_3i):;>’ 9) =: T(p,d, e, aq,s).
Thus
a—p = ag—p+tses
B (ag —p,e X d)
R (es, e x d) s
_ (e3,e x d)(ag —p) — (a0 — p,e x d)es
(1) o (es, e x d)
 (exd) x ((a0—p) X ca)
(es, e x d)
_ ((ag—p) x es,€)d — {(ag—p) X e3,d)e
(es, e x d)
_ (w, e)d — (w, d)e
(es, e x d)
where
(12) w = (ag—p) X e3.

Plugging (1) into (5) and using (11), we obtain the
measurement value

(a—p, dx(dxe))

<a —p, —d+ (d, e>e>

{(w,e)d — (w, d)e, (d, e)d — ||d||”¢)

<<w, e)d — (w,dye, —d + (d, e>e>

(w,d)(ldI” — (d, e)*)

(w, e)((d, e)> — ||d|”)

_(w,d)  {(a0 —p) x e3,d)
((a0 —p) x e3,¢€)

(w, €)
U(pa da €, aO) .
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Thus the functions 7" and U express the time and
value of the measurement in terms of the parameters
p, d, e, s and ag where, in turn, ag is a function of the
body coordinates A, B, H and the displacement coor-
dinates Zrer, Yret, ©-

4 Partial Derivatives

To see how sensitively the functions 7" und U depend
on their arguments, we calculate the associated par-
tial derivatives. We first determine the gradients of
T and U with respect to p, d and e (where e is con-
sidered as an element of R®, i.e., where the constraint

lell = 1 is momentarily ignored). Starting with 7', we
find first that

dxe

(14) sles x d, e}’

v, T =

Next we see that V4T equals

((ag—p) x e,d)(e3 xe) — (e3 xe,d)((ag—p) xe)
s{es x e, d)?

<<a0—p, e X dyes — (ez, e X d)(ao—p)> X e

s{es x e, d)?

(15) <(€ x d) X (63 X (ao—p))) “ e
N s(es x e,d)?
_ (wx (e xd)) xe B (w, e)(e x d)
s{es x e, d)? s(es x e, d)2
so that
16) vy — fwalexd (welexd)

s(es x e, d)? sles x d,e)?

Finally, V.T equals

((ag—p) x d,e)(e3 xd) — {e3xd, €)((ao—p) x d)
s{es x d, e)?

<<a0—p,d x e)es — (e3, d X e>(a0—p)> x d

s(es x d,e)?

17

(17) <(d x e) x (es x (ao—p))> x d
B s(es x d,e)?
 (wx(dxe))xd (w,d)(d x ¢)
N s(es x d,e)?  s{es x d,e)?

so that

(18) VT — (w,d)(d x e)

sles x d,e)?
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Turning to U, we find that
VU = (w, e)(e3 x c<i1)u—e><;u, d)(es x e)

(19) e (<w;§)>ci>—2 (w, dye)

_ e3><(w><(d><e))

(w, €)2

and also

= - {w,d)w
(20) ViU = o) and V.U — o

Moreover, we obviously have

(21)  VaT = —V,T and V, U= —V,U;

the partial derivatives of T and U with respect to
any of the parameters A, B, H and ef, yrer, ¢ are then
given by

oT - aao oU - aao
(22) E - <va0Ta K> and E - <va0 Ua K>
where
N o B R
0A 0B .
| cos ¢ —sing
o3) dag _(ll dag Acos<p0—Bsin<p
oH | 0 O —Asinp — Beosgp
aao 1 aao 0
9 o R T
Tref 0 Zref 1
Finally,
O ((ao-p)xde)  -T
24 — = " = —
(24) 0s s2{es x d, e) s

We now use the partial derivatives to show which
changes in the measurement functions 7" and U are
caused by changes in the system parameters. The
only parameter for which this is not straightforward
is the direction e, because now we have to incorpo-
rate the constraint |le]| = 1. (In other words, the
argument e of the functions 7" and U must not be
considered as an element of the linear manifold R3,
but as an element of the nonlinear manifold $ := {z €
R? | ||| = 1}.) One possible way of proceeding would
be to choose a parametrisation

(0, ¢)
(25) 0,0) — | n(0,¢)
(0, )
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of the unit sphere S, for example spherical polar co-
ordinates

£(0, )
(26) | n(0,9) | =
(0, 9)

with respect to a reference system (b1, bo, b3) chosen
such that the parametrisation is smoothly invertible
about the actual unit vector e, and then to calculate
the partial derivatives with respect to the coordinates
6 and ¢. Proceeding this way, however, may lead to
numerical difficulties; therefore, we choose a different
approach. Namely, we consider only increments de €
R* which are tangent to S at e (with the consequence
that ¢ + de is an element of the unit sphere S up to
second-order effects). Let us write

cos 6 cos ¢ by 4 cos @ sin ¢ by +sin 0 bs

£
(27) e = |n
¢

where €2 + 2 + ¢2 = 1; since the detector cannot be
aligned with the direction of motion of the conveyor
belt, we have e # e3 and hence £2 + 5 # 0. Then the
tangent space 7T,.S of S at the point e is spanned by
the vectors

1 N
Ti(e) = ——— | ¢| and
@ = Tar| ¢
(28)
1 _SC
To(e) = exTi(e) =

| -

\VE2 +n? €2

so that we must consider only increments of the form
(29) de — Al . T1 (6) —+ Ag . Tg(e).

Note that the fact that 73(e) and T»(e) are orthonor-
mal unit vectors implies that

locl = /A% + A3

Now changing e by an increment de as in (29) yields,
in first-order approximation, changes (67). in 7 and
(8U), in U which, using (18) and (20) and the identi-
ties

(30)

(dxeTi(e)) = (d,e x T1(e)) = (d, Ta(e)),

(31) (dx e Tae)) =(dxeexTi(e) =—(d,Ti(e)),

are given by

((ST)B - <VBT, (S€> - <VBT, AlTl (6) + AZTZ (€)>

_ (w,d){d, Tr(e)) ,  (w, d){d, Ta(e))
s(es x d,e)? s(es x d,e)?

(32)
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and

((SU)E - <VBU, (S€> - <VBU, AlTl (6) + A2T2(€)>

_ (wdw Ti(e) 5w d)w To(e))
! (w, e)?

(w, ¢)?

(33)

As.

5 Estimation Procedure

The practical determination of the detector configu-
ration from the available measurements requires fil-
tering out the noise with which the measurements
are fraught. This is a standard estimation problem
which, in reasonable generality, can be formulated as
follows. (See [2], pp. 120-133 for more details.) A
measurement vector p depends on two kinds of pa-
rameters U and u which are distinguished because of
the different roles they play in the subsequent esti-
mation process: U is treated as a solve-for parame-
ter whereas u is taken as a consider parameter; i.e.,
the value of U will be estimated whereas u is only
considered in assessing the accuracy of the estimate
obtained for U. (In our case U = (p,d, e, ¢, s) while
U — (Al, Bl, Hl, cey AN, BN, HN) where (Al, Bi, Hl) are
the body-referenced coordinates of the i-th landmark,
where 1 <i < N.) Alternatively, ¢ and s can also be
treated as consider rather than solve-for parameters.)
If U* and »* are the true (but unknown) parameter
values then the measurement vector  obtained is

(34) =

where n is the measurement noise (whose covariance
matrix is supposed to be known). We assume that
we have initial estimates Ui,y and win;; for the param-
eters in question. While the estimate for « is never
changed, we want to iteratively improve the available
estimate for U. Thus we ask how to optimally update
an “old” estimate U,q to obtain a “new” estimate

WU ) 4 n

(35) Unew - old T oU .
To assess the quality of an arbitrary estimate (U, u),

we introduce the residual vector

which is a list of the differences between the actu-
ally obtained and the theoretically expected measure-
ments. To properly measure the size of the residual
vector, we weight the different measurements accord-
ing to their respective accuracies; i.e., we introduce
the scalar quantity

(37)

QU,u) = p(U, u)TWp(U, u)

with the weighting matrix

(38) w Cov[n]'.
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Denoting by vW the unique upper triangular matrix
M such that W = MTM (obtained by performing the
Cholesky decomposition of W see [1], pp. 37-43, and
[3], pp. 146-149) we can write

2
[

(39) QU,u) = |VWp(U,u)

thus in the case of uncorrelated measurements @ is
simply the sum of the squares of the weighted residu-
als, where the weighting factor for any measurement
is the reciprocal of the standard deviation of this mea-
surement. Now an update step 6U as in (35) is con-
sidered optimal if it minimises the size of the resulting
“new” residual vector

Pnew = P(Unew, Uinit) = p(Uola + 60U, tinit)
(40) ~ p(Ugld, tinis) + (0p/0U) (Usia, tinit)OU
= pold — A(Uold, tinit) U
where
(41) AU, u) = a—'u(U,u)
oU

denotes the matrix of partial derivatives of the mea-
surements with respect to the solve-for parameters.
Thus, using first-order approximations, we want to
choose the update 6U such that

2 2
(42)  Qnew = [VWpnew | = [ VW pola — VW ASU ||

(where A := A(Uga, uinit)) becomes minimal. It is well
known (see [2], pp. 109-119) that if 4 has maximal
rank this minimisation problem has the unique solu-
tion

(43) U = (ATWA) TATWpaq .

However, the matrix ATW A is often ill-conditioned;
thus for numerical reasons it is not recommended to
perform the matrix inversion in (43) in a straight-
forward way. Instead, we determine an orthogonal
matrix P such that

(44) PVWA = R — {Rl}

0

has upper triangular form (where R; is an upper tri-
angular square matrix whose size is given by the num-
ber of solve-for parameters). (Such a matrix P can
be determined by a sequence of Householder trans-
formations; see [1], pp. 57-67, and [3], pp. 164-168.)

We let
(45) € = PVWpoua;

since applying an orthogonal matrix does not effect
the norm of a vector, (42) becomes

2 _ ||| € R6U
fe-naer = 5]

&1 = R16U| + ||&]|%;

2

Qnew -

(46)
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it is clear that this last expression is minised by letting

(47) = Ry

Note that (47) yields (43) because

Ry'¢ = (RTR)'RT¢;, = (RTR)'RT¢ =
(ATVW' PTPVW A ATVW ' PTPVW poid

which, using PTP = 1, becomes (ATW A)~'ATW pygq.
Thus we know how the update step (35) should be
performed. Since in each step we linearised about the
current estimate, iteration of the procedure is neces-
sary. To monitor convergence, we note from (40) that
we can predict which residual vector can be expected
in the next iteration (to be performed with Uyey in-
stead of Uyq), namely

(48)

(49) Pexpected — Pold — A(Uolda uinit)(SU .

We consider convergence to be achieved if the differ-
ence between the residual vectors expected for and ac-
tually obtained in the next iteration becomes “small”;
i.e., if

(50) ma}?\/| ( \4 W(pobtained - pexpected) )z | < €

1<i<

for some predefined convergence margin > 0. It
remains to assess the accuracy of the estimate ob-
tained. After convergence, all remaining residuals are
supposed to stem exclusively from the measurement
noise and the uncertainty in the consider parameter
estimate ui,;; (whereas the final estimate obtained for
U is supposed to be the true value U*). Then, if
Su = upy; — u* i the error in the estimate for u, the
residual vector becomes

p = p—pU" "+ bu)
= p(U"u") +n —p(U*,u + u)
(51) = (U™, u") +n—pU",u") — (Op/0u)(U", u")ou

= n— (Ou/0u)(U*, u")éu
~ n— (Op/0u)(U*, umit)du .

Making the (natural) assumption that the measure-
ment noise and the error in the consider parameter
estimate are uncorrelated and writing

op

_(U*a uinit)a

(52) ey

B =
we find from (51) that

Covlp] = Cov[n] + Cov|B du]

53
(53) = WLt BCov|éu|BT

and hence from (43) that
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Cov[oU| = (ATWA) ATW Cov|p|WAATWA) !

(54 = (ATWA)"! + DCov[su| DT

where D = (ATWA) 1(ATWB). Note that the first
summand in (54) represents the parameter estima-
tion inaccuracy due to the noise in the measurements
whereas the second summand represents the parame-
ter estimation inaccuracy due the consider parameter
uncertainty.

6 Nonlinear Update

When the general estimation procedure explained in
the previous section is applied to the calibration prob-
lem at hand, a peculiarity arises. Namely, the pa-
rameter e (and hence the solve-for parameter U =
(p,d, e, ¢,s)) cannot be taken as an element of a linear
manifold, due to the constraint ||e|| = 1. As stated at
the end of section 4, this is dealt with by allowing only
updates of the special form (29). This has the con-
sequence that a typical row of the partial derivative
matrix (41) takes the form

< T T om 8m>
(65) [ (Vpm)', (Vam)*, (Vem, Th), (Vem, o), —, —

Op’ 0Os

where m is the measurement in question; the update
vector then takes the form

(56)  (8p1, Opa, Ops, 0dy, 8ds, dds, A1, As, S, 65)7 .
Once the update vector is found, we can form éde via
(29), but, of course, we cannot simply write epew =
eold + de because the right-hand side of this equation
is not an element of S. What we do instead is “wrap
around” the vector de and hence apply the update
along the geodesic of S originating from eqq deter-
mined by the tangent vector de.

Figure 4: Nonlinear update of direction vector.
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This results in the nonlinear update step

sin(|de][)

de.
[[¢]|

(57) = cos(||ée||) ecla +

enew

After convergence, the computed covariance matrix
involving (A1, As) can be easily converted into the co-
variance matrix involving the unit vector e = (£,7, ()"
by introducing the (3 x 2)-matrix

| |
T1 (6) Tg(e)

whose two columns are just the tangent vectors T;(e).
Writing A = (A1, A»)T, equation (29) takes the form

(58) T =

(59) se = TA
which implies
(60) Cov[ée] = T Cov|A]TT .

Conversely we have T7 Cov[se]T = TTT Cov[A|TTT
which, using 77T = 1, is just Cov[A]; hence

(61) Cov[A] = T7T Covlée] T .

Thus if C is the (10 x 10) covariance matrix for the
vector (56), the (11 x 11) covariance matrix for the
estimate (p, d, e, ¢, 5) is given by ©COT where O is the
(11 x 10) matrix

10 0000 0 0 0 0]
0010000 0 0 00
0001000 0 0 00
000100 0 0 00
0000010 0 0 00
626 := 1000001 0 0 0 0;
000000 Ty Tip 00
0000000 Ty Try 00
0000000 Ty T3 00
000000 0 0 10
000000 0 0 0 1l
le.,
1, 0 0
(63) ©:= [0 T 0
0 0 1

where, in general, we denote by 1,, the (m x m) iden-
tity matrix.

7 Examples

As examples we present two test cases in which 30
landmarks were used whose locations within a suit-
case of length 800 mm and of width 600 mm are shown
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in the following figure. (Each black circle represents
two landmarks at heights of 10 mm and 200 mm above
the conveyor belt whereas each white circle represents
two landmarks at heights of 50 mm and 120 mm.)

700
60‘—@—.
500
() ()
400
30@ () [ () ®
200
() ()
100
’ 200 4&) 600 &

Figure 5: Landmarks used in test cases.

We assumed measurement accuracies of 1.5 mm for
each u-coordinate (reflecting an image processing ac-
curacy of one pixel) and a timing accuracy of 350 's
(being the reciprocal of the scanning frequency of 350
Hz). We made the rather pessimistic assumption that
each of the position coordinates of each of the land-
marks is fraught with noise which is normally dis-
tributed with a standard deviation of 5 mm. Initial
errors of 30 mm for each position coordinate and of
5 degrees for each angular variable were introduced;
morever, the correct value of 500 mm/s for the speed
of the conveyor belt was increased by 10%. In the
first example we used one single detector pointing in
a direction perpendicular to the conveyor belt; see
Figure 2. The estimates obtained in the various iter-
ations were as follows.

parameter true 0 1

p1 (mm) -700.0 | -730.0 | -699.7
po (mm) 200.0 170.0 207.2
ps (mm) 1000.0 970.0 992.0
d; {(mm) 2100.0 | 2070.0 | 2053.8
ds {(mm) 0.0 -30.0 -11.8
ds {(mm) 0.0 -30.0 84.7
¢ 0.0 | 0.0354 | -0.131
n 1.0 | 0.9929 | 0.9913
¢ 0.0 | 0.1134 | -0.008
¢ (deg) 20.0 25.0 17.3
s (mm/s) 500.0 550.0 495.8
RMS 1228.4 864.1
RESDIF 786.0
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parameter 2 3 4
p1 (mm) -700.5 | -700.7 | -700.8
po (mm) 200.2 199.9 199.9
ps (mm) 995.4 999.5 999.7
di (mm) 2066.3 | 2096.2 | 2097.8
ds (mm) 1.8 1.0 0.9
ds (mm) 20.5 0.6 -0.4
¢ -0.050 | -0.008 | -0.005
n 0.9987 | 1.0000 | 1.0000
¢ 0.0014 | -0.000 | -0.001
¢ (deg) 19.4 20.0 20.0
s (mm/s) 499.3 499.5 499.5
RMS 174.4 16.6 7.1
RESDIF 165.4 14.4 0.1

In a second example we used an L-shaped detector
consisting of two rows of CCDs, one pointing perpen-
dicularly to the conveyor belt, the other being placed
transversally across the conveyor belt; see Figure 6.

Figure 6: Detector geometry in the second example.

In this example the following estimation results were
obtained.

parameter true 0 1

p1 (mm) -500.0 | -530.0 | -497.4
ps (mm -200.0 | -230.0 | -217.5
p3 (mm) 1000.0 970.0 999.0
d; (mm) 1000.0 970.0 991.5
d2 (mm) 1200.0 | 1170.0 | 1267.5
ds (mm) 0.0 -30.0 50.5
& 0.0 | -.1077 .0090
m -1.0 | -.9932 | -.9995
G 0.0 .0451 | -.0288
& -1.0 | -.9929 | -.9991
72 0.0 | -.0353 | -.0220
(o 0.0 | -.1135 | -.0358
¢ (deg) 20.0 25.0 18.0
s (mm/s) 500.0 550.0 501.7
RMS 2641.0 | 2985.2
RESDIF 2648.3
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parameter 2 3 4

p1 (mm) -499.1 | -499.9 | -499.9
po (mm) -202.5 | -200.3 | -200.0
ps (mm) 997.2 | 1000.0 | 1000.2
d; {(mm) 993.2 999.6 999.9
ds {(mm) 1218.8 | 1201.9 | 1200.2
ds {(mm) 13.9 0.1 -1.0
& .0031 | -.0003 .0001
T -1.000 | -1.000 | -1.000
G -.0034 .0009 .0009
& -1.000 | -1.000 | -1.000
7 -.0007 | -.0001 | -.0000
(o -.0098 | -.0011 | -0.000
¢ (deg) 19.4 19.9 20.0
s (mm/s) 500.0 500.0 500.0
RMS 655.7 57.9 9.9
RESDIF 594.2 52.3 0.5

One additional iteration reduces the convergence
margin RESDIF (i.e., the maximal weighted devi-
ation between expected and obtained residuals) to
3.8 -10° without significantly changing the parame-
ter estimates or the RMS. Thus in both examples the
proposed method finds the correct solution within a
few iterations with astounding accuracy, considering
the noisy landmark positions used.
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