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Abstract: Accurate grading for hepatocellular carcinoma (HCC) in biopsy images is important to prognosis and 
treatment planning. However, visual grading is always time-consuming, subjective, and inconsistent. In this 
paper, we proposed a novel approach to automatically classifying biopsy images into five grades. At first, a 
dual morphological reconstruction method was applied to remove noise and accentuate nuclear shapes. Then 
we used watershed and snake techniques to smoothly segment nuclei from their background. Fourteen features 
were extracted according to six types of characteristics. We constructed a hierarchical classifier using Support 
Vector Machine and Sequential Floating Forward Selection method to automatically select an optimal set of 
features at each decision node of the classifier. Our experimental results demonstrated that 94.5% of accuracy 
can be achieved for a set of 604 biopsy images. 
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1 Introduction 

Liver cancer is one of major health problems in 
the world and still the most deathful disease 
especially in Taiwan. Hepatocellular Carcinoma (or 
HCC) is the most common histological type of 
primary liver cancer. The prognosis and medical 
treatments are various for different grading of HCC 
so that accurate pathological discrimination among 
different grades of HCC becomes very important. 
However, pathological analysis of tissue is 
time-consuming and requires correct visual 
interpretation for microscopic images. Therefore, 
computer-based analysis for microscopic images is 
highly desired to provide quantitative, more 
objective and consistent results for assisting 
pathologists to improve prognosis and treatment 
planning. *

Many methods for analyzing pathological images 
have been proposed during the last few years. Beil et 
al. [1] proposed a dual approach to structural texture 
analysis for microscopic cell images, in which 
textures are composed of primitives and can be 
described by arrangement of regions and lines. 
Thiran and Macq [2] presented an automatic 
recognition method based on shape and size analysis 
for the observed cells in cancerous tissues and 
                                                 
* The corresponding author 

provided an evaluation method for scoring the 
images to be classified. A Biopsy Analysis Support 
System (BASS) was introduced by Schnorrenberg et 
al. [3] to detect the nuclei of breast cancer based on 
staining intensity and the number of stained nuclei. 
Esgiar et al. [4] developed an algorithm to identify 
cancerous colon mucosa using six texture features. 
Weyn et al. [5] developed a computer assisted 
differential diagnosis system based on syntactic 
structure analysis, which utilized k-nearest-neighbor 
(KNN) algorithm with parameters selected from the 
Voronoi Diagram (VD), Gabriel’s Graph (GG), and 
the Minimum Spanning Tree (MST). A 
computerized method for grading prostate biopsy 
images was also reported in [6], which employed 
multi-wavelet transform and co-occurrence matrices 
for feature extraction to analyze the entire image 
instead of individual cells.  

In this paper, we present an effective approach to 
analyzing and grading HCC biopsy images. At first, 
a dual morphological reconstruction method is 
applied to the original image to remove noise and 
accentuate nuclear shapes. Nuclei are smoothly 
segmented using watershed and snake techniques. 
Then fourteen features are extracted according to six 
types of characteristics including nuclear size, 
nucleocytoplasmic ratio, nuclear irregularity, 
hyperchromatism, anisonucleosis, and nuclear 
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texture. An optimal feature subset is automatically 
selected using Support Vector Machine and 
Sequential Floating Forward Selection method for 
each decision node of the hierarchical classifier so 
that biopsy images can be classified effectively. 
Experimental results showed that 94.5% of accuracy 
can be achieved for a set of 604 biopsy images with 
another 200 images as the training set. 

 
 

2 Image Acquisitions and Segmentation 
In this study, every image was obtained by the 

same processing and acquisition method. Tissue was 
embedded in paraffin cubes after chemical 
processing and then cut into very thin sections. These 
sections were placed on glass slides and stained with 
colored dyes such as Hematoxylin and Eosin. The 
images were acquired by a set of equipments 
including a high-quality optical microscope, a high 
resolution CCD camera, and an image acquisition 
computer system. Each image was taken through a 
microscope with magnifying factor of 400. There 
were 804 biopsy images with resolution 4080 by 
3072 captured by the above procedure. These images 
were analyzed by an experienced pathologist and 
classified into five grades (0 to 4) in advance for later 
comparison. 

According to the six types of characteristics for 
identifying HCC tumor, the major features used for 
grading are mainly related to cell nuclei; therefore, it 
is essential to segment nuclei from the images 
correctly. A HCC biopsy image may contain many 
undesirable elements such as erythrocyte, leukocyte, 
and impurities as shown in Fig. 1. In our system, we 
used a dual morphological reconstruction method to 
eliminate irrelevances without changing the shapes 
of nuclei in biopsy images. 

Morphological reconstruction [7][8] starts with 
eroding the original image, and then applies a series 
of conditional dilations to the marker image using the 
original image as the conditional image. 
Morphological reconstruction is more effective than 
the conventional opening and closing algorithms for 
removing small blemishes without affecting the 
shapes of interested objects. The process of 
morphological reconstruction for a HCC image is 

shown in Fig. 2, where Fig. 2(a) is the original RGB 
color image, Fig. 2(b) is the grayscale image in the 
red plane, Fig. 2(c) is obtained by eroding Fig. 2(b) 
with a disk shape structure element, Fig. 2(d) is the 
result from morphological reconstruction using 2(b) 
and 2(c) as mask and marker images, respectively. 
Then a second morphological reconstruction 
procedure (a dilation followed by a series of erosions) 
is applied by using Fig. 2(d) as the mask image and 
Fig. 2(e) as the marker image. The final result is 
shown in Fig. 2(f), where the shapes of nuclei are 
well preserved and other irrelative objects are 
removed.  

Thresholding methods [9] are usually used for 
image segmentation. Since the intensities within 
nuclei and in the background are not uniform as 
shown in Fig. 3(a), we utilized watershed transform 
[10] to obtain the edges of nuclei and the snake 
method [11][12] to smooth those edges. The intuitive 
idea of watershed transform is to regard a grayscale 
image as a topographic relief, which is flooded with 
water starting at the surface global minima. The 
water level would increase to fill up lower elevation 
points first. When water coming from different 
basins would meet, dams called watershed ridge lines 
are built. An example of watershed transform for 
nuclei is presented in Fig. 3. Figure 3(b) is the 
gradient image by performing Sobel operator on Fig. 
3(a). The result obtained from watershed 
segmentation is shown in Fig. 3(c). To refine the 
contours of nuclei, a snake method [11][12][13] was 
applied and the final result of segmentation for a 
biopsy image is shown in Fig. 4. 

 

(a)

 
 
 
 

 
 
 
 
 
 
 

Fig. 2. An example of dual morphological reconstruction. 

(b) 

(c) (d) 

 
Fig. 1. A HCC biopsy image. 

(e) (f) 
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Fig. 4. Final segmentation result 
from a biopsy image. 

 
 
 
 
 
 
 
 
 
 
 
 
3 Features Extraction 

The HCC tumor can be classified to five grades (0 
to 4) according to six types of nuclear characteristics: 
nuclear size, nucleocytoplasmic ratio, nuclear 
irregularity, hyperchromatism, anisonucleosis, and 
nuclear texture. Grade “0” stands for normal and this 
number will increase with increasing malignancy 
level [14][15]. The 14 features derived from these six 
types of characteristics for automated grading are 
described below. 
 
Type-1 (Nucleocytoplasmic Ratio): 
  Nuclear density, nucleus-to-cytoplasm ratio, and 
cell-size are the three features to be derived from 
type-1 characteristics. Biopsy images with high HCC 
grades usually have high nuclear density, high 
nucleus-to-cytoplasm ratio, and small cell-size. A 
segmented biopsy image can be envisioned as a 
complete connected weighted graph, in which nodes 
are the nuclei and the weight associated with an edge 
is the distance between two nuclei. Then a Minimum 
Spanning Tree (MST) [16] T can be found and used 
as the model for extracting the following three 
features:  
 Nuclear density (F1):   

( )( , )
( , )

1u v T
w u v

V∈

⎛ ⎞
⎜ ⎟ −⎝ ⎠
∑           (1) 

 
 Nucleus-to-Cytoplasm ratio (F2):  
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∈
∑     (2) 

 
 Cell size (F3): 
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∈

+∑       (3) 

 
In the above equations, (u,v) is an edge in T, w(u,v) is 
the distance between nucleus u and v, area_n(v) and 

area_c(v) stand for the area of nucleus v and its 
cytoplasm, respectively; and |V| is the number of 
nuclei. In our MST model, a cytoplasm area can be 
estimated by extending the boundaries of two 
neighboring nuclei until they meet at the middle 
point of their virtual connecting edge.  
 
Type-2 (Nuclear Irregularity): 
  Shape is one of the most important low-level 
image features to human perception. Because of 
serious deformity, the shapes of nuclei are no longer 
kept round in cancerous tissues. Therefore, we 
extract three numerical values for estimating 
irregularity of a nucleus as follows: 
 Circularity (F4) [17]: 

24 Area
Circumference

π× ×      (4) 

 
 Area irregularity (F5): There are four intersecting 

points between a nucleus and its Minimum 
Bounding Rectangle (MBR) as shown in Fig. 5. If 
the intersecting point is on a vertical (horizontal) 
side of the MBR, a horizontal (vertical) cutting 
line will go through this point. Consequently, four 
possibly overlapping areas will be formed with 
each area surrounded by a segment of nucleus’s 
boundary, a vertical line, and a horizontal line. 
Irregularity of nucleus can be reflected by 

4

1...4,1

1 min ( ) ( )
4 j j ii

area Si area Sj
= ≠

=

−∑    (5) 

 
 Contour irregularity (F6): Since a nuclear shape 

is quite smooth, it can be represented by a 
sequence of sampling boundary points {p0 p1 p2 ... 
pj-w … pj …pn-1} with pt=pt+n for t=... -1 0 1…. 
Curvature at a boundary point pj=(xj yj) can be 
approximated by the differentiation of two 
successive tangent values in window w [18]:  

 

  
(a)                 (b)                (c) 

Fig. 3. An example of watershed transform. (a) Result from 
morphological reconstruction. (b) The gradient image. (c) Result 
from watershed segmentation. 
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Then we define contour irregularity as  

1

1
0

n

j j
j

d d
−

−
=

−∑         (6) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Type-3 (Hyperchromatism): 
  Hyperchromatism represents excessive 
pigmentation in hemoglobin content of erythrocytes. 
It is an important characteristic appearing in a 
malignant tumor. For the case of higher grade HCC, 
chromatin abnormality will increase the staining 
capacity by staining colored dyes especially in cell 
nuclei. By taking the advantage of reflecting the 
amount of chromatin within nuclei, we can obtain the 
following two features: 
 Average intensity (F7): the intensity of nuclei in 

higher grade HCC appears darker than that of 
normal nuclei. Thus, the average intensity reflects 
the degree of dyeing for nuclear staining and can 
be easily extracted from gray-level nuclei. 

 B/D spot ratio (F8): Within a malignant tumor, 
increasing chromatin will cause more holes to 
occur. The holes are reflected by the ratio of 
bright and dark spots in nucleus. The bright and 
dark spots can be found by using top-hat and 
bottom-hat transforms [19], respectively. 

 
Type-4 (Nuclear Size): 
 Area (F9): HCC with higher grade implies a 

higher probability of larger nuclei. Therefore, 
nuclear size is also used as a criterion for HCC 
grading and can be obtained by simply counting 
the number of pixels in nucleus. 

 
Type-5 (Anisonucleosis): 

In cases of HCC with high grades, the variance 
among the areas of nuclei is noticeable. Thus, the 

following two features can be derived from size 
distribution of nuclei for identifying HCC with high 
grades. 
 Standard deviation of nuclear size (F10): This 

feature is calculated by the squared root of the 
average squared deviation from the mean nuclear 
size. 

 Difference of extreme nuclear sizes (F11): 
Sometimes in grade-4 HCC images, there are 
only a few nuclei having large area differences. 
So the standard deviation of nuclear size can not 
represent anisonucleosis effectively. In this case, 
we use the difference between the maximal and 
minimal areas of nuclei as anisonucleosis. 
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Type-6 (Nuclear Texture): 

Gray Level Co-occurrence matrices (GLCM) have 
been shown to be useful in texture analysis 
[20][21][22]. For nuclear texture analysis, the 
following three features are derived from a GLCM 
Nd with neighboring pixels separated by a distance d 
in directionθ . In our implementation, we chose d=1 
and θ =0o, 45o, 90o, 135o. 

 
 Uniformity Energy (F12): 

2[ , ]
d

i j
N i j∑∑       (7) 

 
 Contrast (F13):   

2( ) [ ,d
i j

i j N i j− ]∑∑      (8) 

 
 Homogeneity (F14): 

[ , ]
1

d
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N i j
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4 Classification 
This study investigated the performance of two 

classifiers. One is to directly use SVM once to 
classify biopsy images into five grades by using all 
fourteen features. The other is to construct a 
hierarchical classifier so that each decision node has 
an optimal feature subset automatically selected by 
Support Vector Machine [23][24] and Sequential 
Floating Forward Selection method [25]. 

Support Vector Machine is a popular classification 
and regression technique [23]. The basic idea of 
SVM is to transform data into a higher dimensional 
space and find the optimal hyperplane with maximal 
separation margin between classes. In this study, the 
implementation of SVM used for experiments is 
LIBSVM [24]. 

 

Fig. 5. Two examples of area irregularity. (a) A round 
nucleus. (b) An irregular nucleus. 

(a) (b) 
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Conventional image classification methods use a 
fixed number of features for classifying images. 
However, for HCC grading, the features used for 
identifying various grades are different. For example, 
texture is the best among the 14 features if we want 
to distinguish grade 0 from grade 1 while 
nucleocytoplasmic ratio is the best if we want to 
distinguish grade 1 from grade 3. Therefore, we 
propose a hierarchical structure shown in Fig. 6 as 
the classifier for distinguishing all five grades. Our 
approach can prevent irrelative or insignificant 
features from being selected to reduce the dimension 
of feature space while avoiding possible 
interferences during the decision process. Sequential 
Floating Forward Selection (SFFS) method is used to 
help choosing a subset of features so that the feature 
space is optimally reduced according to a certain 
evaluation criterion [25][26]. The basic idea of SFFS 
is based on the “plus l - take away r” concept [27], 
which can be implemented by a procedure with each 
Sequential Forward Selection step followed by a 
number of Sequential Backward Selection steps as 
long as the resulting subset is better than the 
previously evaluated ones at that level. The optimal 
feature subset associated with each node of the 
classifier is shown in Table 1. At each node, an 
optimal subset of features was selected from the 14 
features so that the two extreme grades can be 
effectively distinguished by those selected features. 
For instance, the two extreme grades are G0 and G4 at 
the root node, which can be distinguished by the set 
of optimal features FS1={F3-F5, F7, F9, F12}. The 
two extreme grades for the right child of the root 
node are G1 and G4, which can be differentiated by 
the set of optimal features FS3={F3-F5, F7, F8, F10, 
F11, F13}. Thus we can easily obtain the 
classification result for any biopsy image through a 
sequence of four decision-making steps. 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

FS1 

G2, G3 

G0, G1, G2

G0, G1, G2 ,G3, G4 

G0, G1, G2, G3 G1, G2, G3, G4 

FS2 

G1, G2, G3 G2, G3, G4

FS3 

G0, G1 G1, G2 G3, G4

FS4 

G0 G1 G2 G3 

FS5 

G4

FS6 

FS7 FS8 FS9 FS10 

 
 
 
 

5 Experimental Results 
We have evaluated the performance of our HCC 

grading system using 604 biopsy images. There are 
five possible grades from G0 to G4. To establish the 
ground truth, the images were graded by an expert 
pathologist in advance. For convenience of easy 
process, each image was divided into 12 equal parts, 
and the fourteen features were extracted from each 
part individually. Sometimes, there is more than one 
grade appearing in different parts of the same image. 
If such a case occurred, the highest grade was 
considered and recorded. 

Table 2 shows the result of our classification 
method. There are 604 biopsy images in total; among 
them 58 images were graded as G0, 26 images were 
graded as G1, 75 images were graded as G2, 220 
images were graded as G3, and 225 images were 
graded as G4 by an experienced pathologist. We used 
200 images as the training set and another 604 
images for testing. Our classifier has 100 % accuracy  

  Fig. 6. The hierarchical classifier for HCC grading. 

Table 1. Optimal feature subsets at each criteria node. 

 F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14
FS1            
FS2            
FS3            
FS4           
FS5              
FS6            
FS7           
FS8           
FS9            
FS10          
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Table 2. Performance results of our hierarchical classifier. 
Classification results using our method Grades Visual 

Grading G0

 
 

G1 G2 G3 G4 
 
 
 
 
 
 
 
in grading G0 and G1. The lowest accuracy is 91.4% 
in grading G3. It seems that our method is more 
“aggressive” as compared to manual grading because 
18 out of 220 images were classified as G4 instead of 
G3. On an average, the overall accuracy is 94.5% for 
classifying 604 biopsy images. In addition, the 
performance of our classifier is better than of a SVM. 
Figure 7 shows the comparison result between a 
SVM classifier and our hierarchical classifier for 
HCC grading with a training set of size 50, 75, 100, 
125, 150 images, respectively. The result shows that 
our hierarchical classifier with optimal subset of 
features in each decision node always has higher 
accuracy than SVM using a fixed number of 14 
features.  
 
 
 
 

 
 
 
 
 
 
 
 
 
 

 
6 Conclusions 

Accurate grading for hepatocellular carcinoma 
(HCC) in biopsy images is important to prognosis 
and treatment planning. Visual grading by human 
beinsgs is time-consuming, subjective, and 
inconsistent while computerized HCC analysis for 
biopsy images is a very complex task requiring a lot 
of appropriate image processing steps and experts’ 
domain knowledge for correct justification. In this 
paper, we proposed a novel approach to 
automatically classifying HCC in biopsy images into 
five grades. In image preprocessing, a dual 
morphological reconstruction method was applied to 

remove noise and accentuate nuclear shapes. Nuclei 
were segmented from images using watershed and 
snake techniques. Such a hybrid approach is robust 
in terms of removing noise and preserving shapes of 
nuclei in an effective way. Fourteen features were 
then extracted from segmented biopsy images 
according to six types of characteristics. A 
hierarchical classifier was built to automatically 
classify HCC in biopsy images into five grades so 
that benignancy and various degrees of malignance 
can be distinguished. To make sure the classifier 
should have an effective performance, Sequential 
Floating Forward Selection method was adopted to 
select an optimal feature subset for the Support 
Vector Machine associated with every decision node 
at each stage of classification. Our experimental 
results demonstrated that 94.5% of accuracy can be 
achieved for a set of 604 biopsy images. The results 
also showed that our method has higher accuracy 
than the simple SVM classifier directly using the 
fourteen features.  
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