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Abstract: - Continuously measured physiological signals have the potential to act as non-invasive, real time 
indicators of human psychophysiological phenomena. Recently, several non-intrusive, wireless, and discrete 
measurement devices have been developed. For these reasons, there has been growing interest for using 
physiological signals for estimating emotions and other psychological processes during human-computer 
interaction. In the current work, we present the first steps towards constructing a person-independent online 
system that automatically identifies heart rate responses and estimates subjective experiences during voluntary 
facial activations. The preliminary results of our study showed that voluntarily produced facial expressions had 
an effect on subjective emotional experiences and physiological processes. Further, our results suggest that 
heart rate responses to facial activations can be detected and classified in order to support more accurate and 
efficient emotion detection.  
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1   Introduction 
Recently, there has been growing interest for using 
physiological signals in human-computer interaction 
[e.g., 1,2]. In addition to providing new modalities to 
act as voluntary input, physiological measures have 
potential as continuous estimates of the cognitive 
and emotional state of a person. In fact, it is quite 
difficult to acquire as accurate information on a 
competitively fine time scale using other measures 
[3]. For these reasons, physiological data can be 
considered to be one of the most important sources 
of information for affective computing, that is, 
computing that relates to, arises from, or deliberately 
influences emotions) [4,5]. Further, many non-
invasive and unobtrusive physiological measurement 
techniques have recently been developed. For 
example, an ordinary looking office chair embedded 
with electromechanical film can be used to measure 
heart rate non-invasively [6]. Such techniques allow 
measurements to be taken discreetly and 
ubiquitously, which suggests that these measures 
could soon become common in everyday human-
computer interaction.  
     Physiological measures of emotion have been 
studied extensively. A well-tried measure of 
emotional state is facial electromyography (EMG) 
which reflects the electrical activity of facial 

muscles. For example, corrugator supercilii muscle 
(activated when frowning) activity increases during 
negative experiences and decreases during positive 
experiences [7]. Zygomaticus major muscle 
(activated when smiling) activity changes in the 
opposite manner during affective stimulation. Based 
on these correlations, Partala and others [8,9] 
developed person-dependent online and person-
independent offline classifiers for emotional 
experiences with accuracies of about 70% to 80% 
depending on stimuli.  
     As another example of physiological measures 
that reflect experienced emotions, heart rate 
responses have been found to differ between 
different emotional stimulations [6,10,11]. In these 
studies both negative and positive visual stimuli 
produced a similar heart rate response pattern of 
decelerations and accelerations. However, as 
reported in [10], unpleasant stimuli provoked the 
greatest initial deceleration, while pleasant stimuli 
resulted in the highest peak acceleration. Also 
voluntarily produced facial activations have been 
found to induce emotion-specific patterns of 
autonomic central nervous system activity, including 
changes in heart rate [11].  
     The variability of heart rate has been associated 
with emotions as well. For example, low frequency 
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heart rate variability accentuates when the person 
experiences anger [12]. However, both heart rate and 
heart rate variability are affected by attentional as 
well as emotional processes [10,13]. For example, 
Anttonen and Surakka [6] found in their study that 
only about 62.5% of individual heart rate responses 
to emotional visual stimulation were well or 
adequately in line with the overall mean response. 
     As illustrated by the previous discussion of EMG 
and heart rate measures, recognizing mental states 
and responses based on one physiological signal is 
challenging because physiological responses are 
person-dependent and they reflect several 
overlapping reactions and mental processes. For 
these reasons, simultaneous psycho-physiological 
measures are often used to augment each other and 
provide converging data for conclusions [e.g., 14]. 
However, these additional measures complicate the 
setup required for measurement, especially 
compared to novel methods for detecting heart rate 
[6]. Further, often these systems have to be adapted 
to each person, that is, they are person-dependent. 
This limits the scope of these systems, as they are 
not readily applicable for multiple users, for 
instance, in public spaces.  
     The present work investigated the construction of 
a person-independent online system for detecting 
psychophysiological reactions based on heart rate 
patterns alone. The system consisted of two stages. 
First, meaningful events were detected based on 
changes in heart rate patterns. Next, patterns of heart 
rate and heart rate variability measures were 
extracted and automatically classified using several 
classification methods. Finally, the performance of 
the system was analyzed, in both detecting events 
and classifying them.  
 

 

2   Methods 
 
 
2.1 Materials 
 
  
Twenty-seven students (4 female) participated in an 
experiment investigating the effects of voluntary 
facial muscle activations on subjective experiences 
and heart rate patterns [15]. During the experiment, 
heart activity was registered with a wireless 
electrocardiography (ECG) measurement patch [16] 
while participants performed voluntary activations 
of two facial muscles (corrugator supercilii and 
zygomaticus major). Activity was held at one of 
three intensity levels for 30 seconds. Each 

participant performed each of the six tasks five 
times, for a total of 30 tasks per participant. After 
each task, participants were asked to rate the 
experienced emotional valence and the ease of the 
task with two bipolar scales from 1 (unpleasant, 
difficult) to 9 (pleasant, easy). An interval of 30 
seconds preceded each task.  
     The data for present study consisted of subjective 
ratings of emotional valence and both non-uniformly 
and uniformly sampled heart rate (HR) values which 
were extracted from the ECG. First, recordings with 
malfunctioning ECG equipment were recognized 
and discarded, leaving data from 17 participants for 
further stages. Instantaneous HR sampled at 5 Hz 
was used as the material for the event detection stage 
in the present study. In addition, a non-uniformly 
sampled heart rate signal was computed from the 
data in order to provide additional material for the 
pattern classification stage. 
 
 
2.2 Procedure and Data Analysis 
 
 
The event detection stage was performed as follows. 
First, an autoregressive moving average (ARMA) 
model with AR order of 1 and MA order of 2 was 
trained using instantaneous HR data from all 
subjects. Then, the model was used to predict the 
succeeding heart rate value based on two previous 
samples. A series of prediction error (PE) values was 
computed by subtracting the true value from the 
prediction. Finally, potential events were extracted 
from squared PE data using Eq. (1), where 1 
signifies a suggested onset or offset of a task and 0 
signifies a non-event.  
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     When Eq. (1) suggested a potential event during 
the first fifteen seconds after a task had begun or 
ended, the suggestion was counted as a hit. 
Subsequent suggestions during the same fifteen-
second period were disregarded. Periods without a 
hit were counted as misses. If a suggestion occurred 
at any other time, it was counted as a false alarm.  
     Pattern classification was based on five features 
extracted from instantaneous and non-uniformly 
sampled HR data. The mean, minimum, and 
maximum heart rate values during the task were 
computed from instantaneous HR with five-second 
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baseline correction. Low frequency (0.04 to 0.15 
Hz) and high frequency (0.15 to 0.40 Hz) heart rate 
variability was extracted using the Lomb 
periodogram [17,18]. The true class labels were 
based on three different data: the voluntarily 
activated muscle, intensity level of activation, and 
the subjective ratings of emotional valence 
experienced during the task. Ratings were divided  
into three classes: negative (1 to 3), neutral (4 to 6), 
and positive (7 to 9) experiences.  
     The classification was performed as follows. 
First, an unbiased sample was created by randomly 
selecting an equal numbers of samples (as many as 
in the smallest class) from each class. Second, a 
projection to a two-dimensional space was computed 
using multiple discriminant analysis. Third, 
projected samples were used to train a classifier 
using leave-one-out cross validation and either the 
nearest neighbor (NN) or the minimum squared error 
(MSE) algorithm [e.g. 19]. The former was used for 
classification to three categories, while the latter was 
used for classifying data from two classes. The 
procedure was repeated 1000 times (starting from 
random selection of samples). Each result was 
treated as a sample in later statistical analysis.  
     Pattern classification results were analyzed by 
computing the true class rate (TCR), the false class 
rate (FCR), the precision, and the accuracy of 
classification. TCR of class A indicates the 
percentage of samples correctly classified to A. FCR 

of A shows the percentage of samples from other 
classes incorrectly classified to A. Precision of A 
tells how many samples classified to A were 
correctly classified (i.e. their true label was A). The 
accuracy of the classifier shows the total percentage 
of correctly classified samples in all classes. 
Roughly stated, higher values signify better 
performance in every metric with the exception of 
FCR for which lower values are better.  
     The performance of event detection and pattern 
classification stages was compared to the values 
expected by chance (i.e. random guessing) using 
two-tailed t-tests. For example, the expected 
performance of event detection corresponds to the 
number of hits resulting from a random placement of 
suggestions from Eq. (1).  
 
 

3   Results 
Using the event detection algorithm, the onsets and 
offsets of tasks were detected with accuracies of 
66.4% and 70.2%, respectively. The overall 
accuracy was 68.3%. This was significantly better 
than expected by chance, t(16) = 4.0166, p < 0.001, 
MD = 4.566 ± 1.048 (S.E.M.). However, 59.7% of 
suggestions from Eq. (1) were false alarms, which 
can be considered quite a high percentage.  
     The results of pattern classification are presented 
in Table 1 which shows that all classification metrics 

Table 1. The results of pattern classification in percentages (± S.E.M.).  

Statistically non-significant results are presented in bold.  

 

Method Accuracy Class TCR FCR Precision 

Low intensity 36.04 (±0.09) 29.63 (±0.06) 37.83 (±0.08) 

Medium intensity 31.46 (±0.11) 31.41 (±0.06) 33.34 (±0.09) 

NN with intensity 
level of facial 
muscle activation 

36.63 (±0.06) 

High intensity 42.38 (±0.09) 34.01(± 0.07) 38.42 (±0.08) 

Negative  34.45 (±0.24) 28.95 (±0.13) 37.24 (±0.22) 

Neutral  31.48 (±0.23) 31.18 (±0.13) 33.46 (±0.22) 

NN with 
experienced 
emotional valence  

35.80 (±0.15) 

Positive 41.46 (±0.22) 36.18 (±0.14) 36.46 (±0.18) 

Corrugator 20.35 (±0.11) 19.04 (±0.12) 51.81 (±0.05) MSE with 
activated facial 
muscle 

50.65 (±0.00) 

Zygomaticus 80.96 (±0.12) 79.65 (±0.11) 50.40 (±0.01) 

Low intensity 61.42 (±0.04) 29.76 (±0.02) 67.36 (±0.01) MSE with intensity 
level  of facial 
muscle activation 

65.83 (±0.02) 

High intensity 70.24 (±0.02) 38.58 (±0.04) 64.56 (±0.02) 

Negative 56.26 (±0.57) 39.14 (±0.66) 61.17 (±0.25) MSE with 
experienced 
emotional valence 

58.56 (±0.15) 

Positive 60.86 (±0.66) 43.74 (±0.57) 59.20 (±0.21) 

Proceedings of the 11th WSEAS International Conference on COMPUTERS, Agios Nikolaos, Crete Island, Greece, July 26-28, 2007         632



besides the precision in medium intensity and 
neutral classes are significantly different from 
expected values, p<0.0001 for all.  
     Classification to the three classes of activation 
intensity using NN algorithm achieved quite modest 
results. Classifying data to the three categories of 
emotional valence using NN algorithm produced 
similar, modest results. TCR was significantly below 
the value expected by chance for both medium 
intensity activations and neutral emotional ratings. 
Further, as the precision in classifying these 
categories did not significantly differ from random 
guessing, samples from these categories were 
excluded and another round of classification was 
performed with a MSE classifier. As shown in Table 
1, this classification resulted in significantly better 
performance for recognizing both activation 
intensity and experienced emotional valence as 
compared to random guessing.   
 
 

4   Conclusion 
The current study presented the first steps towards 
building a person-independent online system for 
recognizing psychophysiological reactions. The 
preliminary results of our study showed that heart 
rate is a promising measure for detecting and 
recognizing meaningful events. Changes in the 
voluntary behavior of a person, that is, when muscle 
activations started or ended, could be detected with 
an overall accuracy of 68.3%. Although the rate of 
false alarms was quite high as well (59.7%), these 
suggested events are useful for a complete system as 
an indication when more detailed analysis is 
required. This way, processing resources can be 
saved for other tasks at other times, supporting a 
more efficient system.  
     Event detection was achieved using a simple 
ARMA(1,2) model and some basic arithmetic 
operations with less than one second worth of heart 
rate samples. Thus, our algorithm reacts quickly to 
changes in heart activity and requires very little 
effort to perform. As such, it is feasible as a 
preprocessing step for these kinds of systems.  
     Our results also showed that, in most cases, heart 
rate based classification was significantly better than 
random guessing in classifying events according to 
the activated muscle, the intensity of activation, and 
the experienced emotional valence. However, when 
classifying to three categories, the accuracy in 
recognizing the middle category (i.e. neutral 
experience, medium intensity activation) was worse 
than expected from random placement. Further, the 
overall accuracy in classifying to three categories 

was only few percentages better than expected by 
chance. This suggests that the range of 
psychophysiological reactions was limited and 
sufficient only for recognizing the two clearest 
opposites. The performance was even more modest 
when recognizing which of the two muscles was 
activated (accuracy = 50.7%).  
     Nonetheless, whether the experience was rated 
emotionally negative or positive could be predicted 
with an overall accuracy 58.6%. More importantly, 
the precisions in recognizing these classes were 
61.2% and 59.2%, respectively. Thus, a system 
reacting according to the recognized class, for 
example, calming a negatively aroused person, 
would take the correct action more often than not. 
The accuracy of recognizing the intensity of facial 
activation was even better, 65.8% in overall.  
     In summary, our preliminary results indicate that 
heart rate can be used to make automatic inferences 
about both the emotional valence and intensity of a 
psychophysical reaction, and heart rate seems to be 
suited for the latter task in particular. Further, these 
inferences can be made with person-independent 
methods which are suitable for online classification.  
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