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Abstract: - In this paper, we present two stochastic methods, to identify the parameters of a physical process 
with unbiased estimates based on whitening error of prediction. These methods incorporate a recursive 
procedure that makes successive corrections in determining, a linear mathematical model, based on the data of 
observation, to represent the system considered. The ARMA model is a typical example. Several tests of 
simulation were carried out to show the abilities of the least mean squares algorithm LMS and stochastic 
Newton algorithm. An application is provided then to identify the parameters of AR model corresponding to 
the speech signal. 
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1 Introduction 
The majority techniques of identification were 
developed for the identification of the models of 
dynamic systems, when the parameters are, either 
unknown, or vary in time. Thus the method of 
parametric identification consists to determine, in a 
recursive way, a linear mathematical model, based 
on the available data of observation, to represent the 
system considered.  

The proposed structural identification method 
can incorporate as much as possible structural 
information known a priori into the structural 
identification process to improve the identification 
accuracy. To avoid the practical difficulty often 
associated with unbiased estimator measurement, 
two methods are proposed.  

The Least Mean Square algorithm, introduced by 
Widrow and Hoff in 1959 is an adaptive algorithm, 
which uses a gradient method based on a step 
decent. LMS algorithm uses the estimates of the 
gradient vector from the available data and 
incorporates an iterative procedure that makes 
successive corrections to the weight vector in the 

direction of the negative of the gradient vector 
which eventually leads to the minimum mean square 
error.  
 
2 Gradient Method Formulation 
Let us consider a quadratic functional J(x). The 
method of the gradient is given by:  
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Where µ: the step size parameter.  
 
Autoregressive moving average model noted 
ARMA (n, m) is defined by the following equation 
[1]:   
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 Where a 0 = 1, b0 = 0  
             u (t), y (t): Input and output signals   
                      e (t):  White noise.                
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As we can represent this last equation in a matrix 
form:   
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Let us pose these notations [5]:  
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With  

        :  Parameters vector to be identified   
Tθ

        :  Data vector.   
Tϕ

 
The identification of the vector parameters θ within 
the meaning of the average quadratic error is:   
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With 
        Indicate the expectation.   [ ].E
 
However the error of prediction is defined as is 
followed:  
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The minimization of the criterion )(θJ consists to 
find the optimum; it means to find the point where 
the derivative is cancelled, so we write:    
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From where the algorithm of the gradient will be 
written:   
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By replacing Eq.6 in Eq.7, we obtain:  
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This algorithm is called: Algorithm of the 
deterministic gradient, in general the stochastic ones 
of ( )(),( tyt

And we write:  
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Withμ  represent the step of adaptation.   
 
So the convergence and stability of the LMS 
algorithm [1], [8] must to verify:  
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    maxλ : The greatest eigen value of { })()( ttE Tϕϕ  
matrix   
       
 
3 Stochastic Newton Method 
The stochastic algorithm of Newton is indicated for 
the identification of the parameters. It makes it 
possible to minimize the error in a more effective 
way. This algorithm is used in several applications 
of the signal processing. Thus we can write the 
general formula [6]:  
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Let consider a quadratic functional and to find 
the optimal by the stochastic Newton method is 
given by:  
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We put: 
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By replacing in the equation (Eq.11), we write:  
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)ϕ are unknown. However, we replace 
the average value by the instantaneous value, and in 
this case, the algorithm is called by the algorithm of 
the stochastic gradient. 

 
This last equation is called: scalar Newton 
algorithm. 
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The minimization of the criterion )(θJ  described in 
Eq.4 consists to find the optimum; it means to find 
the point where the derivative is cancelled, so we 
write:   
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The use of the stochastic procedure of 
approximation, the Eq.15 will be written:    
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Where 
         )(1 tγ : Scalar function.                    
 
If R is unknown, then R can be estimated by:  
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By applying the procedure of approximation, we 
write: 
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From the equations Eq.18, and Eq.20, the algorithm 
of stochastic Newton can be summarized as: 
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4 Example of Simulation 
Let us consider a stable system [5], [9] with minimal 
phase of order 2, having the following transfer 
function:  
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With    
        a1 = 0.3, a2 = 0.8, b1 = 1, b2 = 0.5 
 

The results obtained by algorithm LMS and Newton 
algorithm are illustrated on tables Tab.1, Tab.2, Tab. 
3 and Tab.4.  

Estimated  Parameters  

N 
1â  2â  1̂b  2b̂  

 

SDV 

256*2 0.2962 0.7912 0.9738 0.4363 0.0272 

256*4 0.2716 0.7975 0.9612 0.4641 0.0165 

256*10 0.3123 0.7987 0.9959 0.4864 0.0107 

256*20 0.2971 0.8041 0.9932 0.4845 0.0082 

256*50 0.3023 0.7963 0.9867 0.4985 0.0067 

 
Tab.1: Effect of the samples N using LMS algorithm 

( 012.0=μ , ) 25.02 =vσ

 

Estimated  Parameters  

μ  
1â  2â  1̂b  2b̂  

 

SDV 

0.0123 0.2990 0.7998 1.0001 0.4985 0.0007 

0.0244 0.3003 0.8005 1.0022 0.5013 0.0008 

0.0498 0.2995 0.8018 0.9972 0.4970 0.0023 

0.1304 0.3054 0.7985 0.9997 0.4974 0.0035 

 
Tab.2: Effect of factor μ  using LMS algorithm 

(N = 256*4, ) 01.02 =vσ

 

Estimated  Parameters  

N 
1â  2â  1̂b  2b̂  

 

SDV 

256*2 0.2896 0.8068 0.9726 0.4506 0.0240 

256*4 0.2865 0.7920 1.0175 0.4943 0.0137 

256*10 0.3029 0.8016 0.9892 0.4904 0.0072 

256*20 0.2915 0.7986 1.0046 0.4915 0.0063 

256*50 0.3017 0.8033 0.9981 0.5055 0.0031 

Tab.3: Effect of the samples N using NS algorithm 
( )  25.02 =σ v
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Estimated  Parameters  

2
vσ  

1â  2â  1̂b  2b̂  

 

SDV 

1.00 0.2931 0.8071 0.9875 0.5164 0.0132 

0.25 0.3086 0.8028 1.0068 0.5150 0.0051 

0.04 0.3054 0.7984 1.0063 0.5051 0.0037 

0.01 0.3008 0.8011 0.9981 0.5019 0.0016 

Tab.4: Effect of the variance using NS algorithm, 
(N=256*10) 
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                  Fig.1: (a) - Evolution of the parameters 
                                      (N = 256*4,   ) 25.02 =vσ
                        (b) - Autocorrelation of error prediction 
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Fig.2: (a) – Slow convergence ( 0123.0=μ ) 
        (b) – Fast convergence ( 1304.0=μ )  
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Fig.3: Error identification using stochastic Newton 

algorithm 
(a) - Error identification of parameters a1 and a2
(b) - Error identification of parameters b1 and b2 

 
  

5 Comparative Study of Stochastic 
Method 
In this paragraph, we present an explanatory and 
comparative table of each estimator steady to a 
stable physical system.  
According to table 1 and table 3, we notice that the 
algorithms applied give us an unbiased estimate 
with the order of 1%, but stochastic Newton 
algorithm remain always most powerful knowing 
that its bias can go until the 0.1%.  
 
 

Algorithms used  

Bias 
Estimators 

Matlab 
Function 

Stochastic 
Newton 

Stochastic 
Gradient 

⎥⎦
⎤

⎢⎣
⎡ −
∧

3.01aE  0.0018 0.0102 0.0177 

⎥⎦
⎤

⎢⎣
⎡ −
∧

8.02aE  0.0048 0.0008 0.0176 

⎥⎦
⎤

⎢⎣
⎡ −
∧

0.11bE  0.0054 -0.0031 0.0187 

⎥⎦
⎤

⎢⎣
⎡ −
∧

5.02bE  
-0.0034 

 

0.0056 

 

0.0397 

 
 

Tab.5: Comparative bias of the estimators 
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6 Interpretation Results 
It is noticed, according to the results obtained that 
when the number of samples N increases or the 
variance of the additive noise, the standard deviation 
SDV of error prediction still decreases until the 
estimated parameters are closer with actual values. 
Thus the position of the zeros of the system does not 
influence on the error of estimation parameters, on 
the other hand the position of the poles must be 
located inside the unit circle to ensure the stability 
of the system, and the convergence of the 
algorithms.  
 
 
7 Application to the Speech Signal  
In this part, an example application of clean speech 
signal is provided to show the abilities of the SN 
algorithm. The data file of speech signal used here is 
named (mf3.dat), which corresponds to the 
following sentence Fig.4: « un loup s’est jeté 
immédiatement sur la petite chèvre » [5]. The 
speech signal generally takes the structure of AR 
model [10] with the order varies between 8 and 12. 
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Where 
          p: represent AR order. 
          v: noise sequence. 
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Fig.4: (a) - speech signal waveform  
(b) - power spectrum magnitude of a partial waveform 
 

 

AR Model 
Parameters 

 

LMS 
Algorithm 

Newton  
Algorithm 

Matlab 
Function 

 

a0 1.0000 1.0000 1.0000 

a1 -0.6754 -0.7757 -0.7738 

a2 -0.1916 -0.1305 -0.1313 

a3 0.0371 0.0379 0.0371 

a4 0.0111 -0.0566 -0.0550 

a5 -0.0220 -0.0055 -0.0075 

a6 0.0718 0.0348 0.0364 

a7 -0.0169 0.0066 0.0038 

a8 -0.0366 -0.0587 -0.0589 

a9 0.0288 0.0498 0.0531 

a10 0.0708 0.0635 0.0619 

Tab.6: Estimated parameters of AR model  
 
 
8 Conclusion 
The stochastic Newton algorithm is most commonly 
used adaptive algorithm because of its simplicity 
and a reasonable performance. Since it is an 
iterative algorithm it can be used in a highly time-
varying signal environment. It has a stable and 
robust performance against different signal 
conditions. However it may not have a really fast 
convergence speed [5], [9] compared to other 
algorithms like the RLS and LMS.  

We showed that the identification of the 
parameters of a speech signal using algorithm SN 
gives good results, but these performances are 
degraded quickly in the presence of disturbance 
compared to the algorithm of recursive least squares 
RLS [11]. In the representation time frequency of 
the disturbed signal, some of the parameters of the 
speech signal are masked by the noise [7]. In such a 
case the parameters of the clean speech cannot be 
estimated starting from the disturbed signal and are 
thus regarded as dubious.  
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