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Abstract:  Introducing a different view point of traditional filter bank approach for spectral estimation it is 
derived a spectral estimation method able to detect a given spectral shape forming part or contributing to a 
given data record. The method provides an estimated power level of the spectral shape contribution to the data 
record, and peaks close to the frequency where the spectral shape is located. Basically, the filter-bank, instead 
of being tuned to a single carrier, is tuned to the spectral shape. The spectral shape used to tune the filter-bank 
is refereed as the candidate spectrum. The major motivation for this procedure was the proper spectrum 
labelling of licensed users and interferers in cognitive radio applications. 
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1 Introduction 
Filter bank signal analysis has been the major tool 
for spectral estimation and the dominant technology 
for spectrum analyzers. In general, filter bank 
represents in the past the way to implement Fourier 
analyzers from acoustics to optics. The periodogram, 
or any DFT based procedure, move filter banks to 
domains of applications where A/D converters 
cannot afford, and being DFT-based technology 
dominant in those cases where the number of filters 
was high and complexity dictates the application. 
Nevertheless, most communications systems as well 
as spectrum analyzers remain in the filter-bank 
philosophy. For instrumentation issues the so-called 
poly-phase networks provide the manner to upgrade 
a Fourier analysis to a filter-bank and they are 
currently used for trans-multiplexers and 
communication systems matching strong mask 
constrains. Furthermore, it seems that filter-bank 
analysis, as an upgrade of OFDM, is well positioned 
to replace completely DFT technology in modern 
communications systems. 

The upgrade to the DFT approach in spectral 
estimation (i.e. the Periodogram) was reported by 
Capon where, instead of designing a low pass 
prototype (data window) that was modulated to the 
steering frequency of the analyzer, propose to design 
a dedicated filter which depends on the steering 
frequency and the data record under analysis. Since 
this is just an upgrade of the Fourier analysis, the 
Capon’s method can be easily extended to 
multidimensional and cross-spectral estimation yet 
preserving the superior performance with respect any 

version based on Fourier analysis. Filter bank 
analysis always estimate spectral density trough 
estimating power in a given frequency band, in 
consequence, constant bandwidth analysis scales the 
power level independently of the frequency; on the 
other hand, dedicated filter bank techniques may 
match the analysis bandwidth to better estimate 
spectral densities. 

Motivated by the interest of, let us say, dedicated 
spectral estimation for cognitive radio applications, 
the so-called traditional spectral estimation 
represented by the dedicated filter bank approach of 
Capon is revisited in order to find fundamentals that 
allow to move the scanning by pure frequencies to 
scanning or tuning the filter to a specific spectral 
shape or correlation signature. This spectral shape is 
refereed herein as the candidate spectrum, which is 
assumed to be known in shape and bandwidth but 
remaining the power level and the frequency location 
unknown. In finding the autocorrelation signature or 
candidate in the autocorrelation matrix of data it is 
shown that the notion of geodesic distance among 
them becomes relevant, concluding that the detection 
and power level estimation depends directly on the 
geodesic distance of the candidate and the and data 
correlations matrix. 

The motivation of this work was the interest that 
for cognitive radio air-interfaces has the ability to 
detect the presence or absence of a licensed user 
regardless other interferers, non-licensed users and 
noise. The reported method shows good performance 
for moderate data lengths and low filter order in 
SNR ranges above those demanded by the 
application. 
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Next section revisit the filter bank method for 
spectral estimation and explores the possibility of 
changing the traditional single frequency scanning 
by a shape scanning obtaining also power level and 
density in the data signal. The spectral shape and its 
correlation signatures are named as candidate 
spectrum. Section 3 is dedicated to connect 
frequency estimators and parametric methods for 
spectral estimation with the so-called candidate 
spectral estimation. Section 4 attempts to formalise, 
in terms of distance between correlation matrixes, 
the formulation of the candidate spectral estimation. 
Next, Section 5 describes briefly the cognitive radio 
motivation and reports the procedure: Finally, some 
simulation and performance evaluation is included 
on the simulations section. 
 
 
2 Revisiting the filter bank approach 
The filter bank approach for spectral estimation is 
based on a dedicated filter design, which steered to a 
given frequency, aims to estimate the spectral 
density of the input signal at this frequency. The 
estimate is given by the output power of the filter 
divided by the bandwidth of the analysis filter. 
Independently of the frequency, including optical 
communications, spectrum analyzers use this 
principle currently and, being dependent on 
technology available, cost and complexity the filter 
bank could be data independent or data dependent. 
From the second class the most popular approach is 
due to Capon, which set a variational design of the 
analysis filter setting an objective that was to 
minimize the filter output power constrained to a 
cero dB. response at the steered frequency. The 
formulation of this design, also know as minimum 
variance, is shown in (1). 
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Where A  contains the FIR Q filter coefficients, 

R is the correlation matrix of the input signal, 

[ ]TwQjjwS ).1(exp(...)exp(1 −=  is the 

steering frequency vector and w ( )f..2 π  is the 
frequency where the estimate of the spectral density 
of the input signal is going to be produced. 

The output power is given by (2), the noise 
bandwidth of the analysis filter is given by (3), and 
the spectral estimate is (4). 
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And it is easy to prove (5) that evidences how 

resolution scales among normalized estimate, power 
estimate and periodogram estimate. 
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The filter-bank framework can be used also for n-

dimensional spectral estimation as well as for cross-
spectral densities. 

As concerns with the design equations, it is clear 
that the response of cero dB. At the steering 
frequency refers to the magnitude only and not 
necessarily over the filter phase at the steering 
frequency. When setting the magnitude constrain 
only (1) is reformulated as (6). 
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The solution to this problem is formulated in (7), 

where λ  is the Lagrange multiplier. And the 
solution for the multiplier and the null-eigenvector is 
shown in (8). 
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Regardless this solution may appears different, it 

produces exactly the same estimates than the 
traditional formulation. In addition it provides 
additional viewpoints on the filter-bank framework. 
First note that in (7) there is a spectral substraction 
from the correlation matrix of the original data and 
the correlation matrix of, let us say, the candidate 
spectrum. In other words, the formulation find out 
how much candidate spectrum is contained in the 
original data. The candidate spectrum is the one that 
corresponds to a single line at the steered frequency. 
Clearly the Lagrange multiplier is basically how 
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much power seems to be contained in the original 
data from the candidate spectrum. Furthermore, the 
power can be reformulated as the maximum value of 
the candidate spectrum that can be subtracted from 
the original data correlation. The solution is that λ  
is set in order that the minimum eigenvalue of the 
resulting matrix is cero. In summary, looking for a 
candidate spectrum, i.e. correlation matrix, the 
maximum eigenvalue of (9) provides the power 
estimate of the candidate spectrum in the data 
spectrum. 
 
 eReR

CANDIDATEDATA
... λ=       (9) 

 
Next section will use the same framework to 

encompass well-known spectral estimation 
procedures for line spectrum and parametric models. 
 
 
3 MUSIC and Parametric Spectral 
Estimation. 
Assuming that the problem is to find out if a given 
spectral candidate )(wSc  (unity area) with 

autocorrelation matrix given by 
c

R in data 

contaminated by other sources with different spectral 
shape, applying the framework of the previous 
section the solution will be to solve for the maximum 
eigenvalue of (10). 
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c
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Once the maximum eigenvalue is found, it is the 

power estimate of the candidate spectrum. At the 
same time, denoting the eigenvector with the filter 
notation, i.e. changing e  by A , (10) can written as 
(11). 
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Clearly, assuming exact spectral subtraction (11) 

implies that the eigenvector is orthogonal to the rest 
of components of the original data.  

It is clear that when the candidate spectrum is 
coloured noise and the rest of the components are 
spectral lines, the inverse of the response of the filter 
peaks at the frequency location of the spectral lines. 
Using the multiplicity of the maximum eigenvector 
we arrive to Music. 
 

To extent the same framework to parametric 
models, starting with the case of a pure AR process, 

being A  the vector containing the denominator 
coefficients of the model, R  the autocorrelation 

matrix of the data and 2σ the power of the input 
white noise to the AR model, and b(0) the coefficient 
of the numerator, equation (12) holds. 
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At the same time,  
 
 [ ] )0(.0...0)0( bAh =       (13) 
 

Where h(.) is the impulse response of the model. 
In summary (12) changes to (14), where vector 1 is 

equal to [ ]H0...01 . 
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Clearly, matrix ( )H1.1  plays the role of the 
candidate correlation matrix and the AR problem 
reduces to solve (15), and the solution is provided in 
(16) which, of course, coincides with the correct one. 
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For ARMA models, just changing equation (13) 

by the relationship between the impulse response and 
the model coefficients we have: 
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Where vector B contains the P+1 numerator 

coefficients. 
The solution is given by (17) which is just a 

generalization of the AR formula. 
 

 ( )( ) 0... =− AHHR Hγ        (17) 
 
This procedure to estimate ARMA spectrums is 
useful in those cases where the impulse response of 
the model is available for a few samples, close to the 
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origin since the SNR use to be higher and very low 
for samples above P. At the same time, it uses the 
correlation values close to the origin with better 
results than estimating the denominator coefficients 
from extended Yules-Walker equations. 
 
 
4 A distance criterion. 
Concerning the problem of finding a candidate 
autocorrelation in the data autocorrelation it can be 
formulated in terms of distance between 
autocorrelation matrixes. Where (18) defines the line 
that connects the data autocorrelation with the 
candidate autocorrelation, the distance between these 
two matrixes is given by (19), sub index F indicates 
Frobenius norm. 
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When the data matrix is equal to the candidate 

plus a single line with autocorrelation given by 
HSS..γ , then is clear that maximizing γ  is 

equivalent to maximise the distance between the 
original correlation matrix and the resulting one from 
the subtraction of the line contribution. Nevertheless, 
it is not adequate to define the distance between 
matrixes from (18), since the line defined does not 
guarantee that any matrix in the line is positive 
definite. 

Using geodesics instead of (18), the geodesic 
from the two matrixes is (20) and the geodesic 
distance is (21). 
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Again, when the original data contains the 

candidate plus a rank-one contribution, only one of 
the eigenvalues of the generalized problem is 
different from one, reducing the geodesic distance to 
the log square of the maximum eigenvalue. 

In general, finding for candidate correlation 
c

R.γ  

in the original data, the resulting square of the 
geodesic distance between the two matrixes will be 
(22) 
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This distance has a minimum when γ  is equal to 

the geometric mean of the eigenvalues and increases 
monotonically when the parameter is above the 
geometric mean. At the same time, γ  is bounded by 
the maximum eigenvalue. In consequence the 
maximum distance is obtained when γ  coincides 
with the maximum eigenvalue. 

In summary, in order to perform spectral 
subtraction of the candidate contribution from the 
original data correlation the maximum eigenvalue of 
the generalized problem maximizes the geodesic 
distance between the original matrix and the 
contribution of the candidate matrix. 
 
 
5 Cognitive Radio application 
The advance of radio technology put in evidence that 
regulation rules become obsolete in some respects. 
Regulators did not envisage today’s technology or, at 
least, not to cope with what can be done with 
advanced and intelligent radio interfaces. One the 
protection that regulation provides to a licensed user 
is the spectral mask. The design of the mask, most of 
the cases, represents a great wall to preclude any 
non-licensed user to access to the spectrum. 
Ultrawideband communications are able to provide 
reliable communications, mainly in the short range  
without violating the regulation mask. Nevertheless, 
the major drawback of current regulation is that the 
radio spectrum is over-licensed but not over-used. 
Licensed worldwide a given frequency band may be 
free of use depending on the location since within 
this location there is not interest for a 
communications operator. This is the case in low 
populated areas or hazardous scenarios among 
others. From the regulation point of view seems to be 
clear that the spectrum have to be licensed taking 
into account the location. It is non-sense to force to 
pay for spectrum in locations where is not going to 
be used by the bidder. Radio spectrum licensed in 
frequency and square meters (geographically) will 
allow frequency reuse in non-licensed sites where 
other communication demands exists. 

Nevertheless, the current system for licensing 
radio spectrum implies that many time-frequency 
slots are free even in highly populated areas. This 
fact represents an opportunity for modern 
technology, which may use these free time-
frequency slots, being able to shutdown the 
communication link when a licensed user enters to 
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the pretended slot. A radio interface with such 
capabilities requires fast and reliable methods of 
spectrum labelling within the frequency band where 
it aims to transmit. Encompassed within the so-called 
cognitive radio, spectrum labelling is one of the 
major subsystems composing a cognitive radio 
transceiver. 

The objective of spectrum labelling is to detect 
any spectral occupancy and, more important than 
this, to label spectral occupancies depending if they 
belong to a licensed user or to an opportunistic one. 
In this section, the concepts revisited previously will 
be used to propose a solution to this problem. 

Let us assume that the licensed user when access 
to the radio spectrum is sensed without knowing the 
power level neither the carrier frequency. The first 
assumption is general since this level depends on the 
location of the sensing equipment. The second 
corresponds to the case where the cognitive radio 
search among different licensed bands and it is agile 
to move among them. The licensed user is assumed 
to use a known power spectral density, which mostly 
depends on the baud rate and the symbol shape. This 
candidate spectrum implies a spectral occupancy 
defined by F(w) for a carrier frequency cero. 
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From this candidate spectrum, the corresponding 

autocorrelation function is obtained by inverse DFT, 
and the Toeplitz matrix 

c
R  is derived in accordance 

with the order of the spectral estimation procedure. 
The greater the order is the best will be the 
performance of the procedure and, at the same time, 
it will increase the number of samples required to 
detect the presence or absence of the licensed user.  

In order to explore the carrier frequency and the 
power level, the candidate correlation is scaled by a 
factor γ  and modulated using the component-
product (the product of the two matrixes is the direct 
product of each corresponding entries) of the cero 
frequency correlation candidate with a rank-one 
matrix formed with the steering vector at the sensed 
carrier frequency. The candidate correlation is shown 
in (24), where ⊗  denotes the component-by-
component product. 
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Note that the candidate spectrum reduces to 
traditional spectral estimation when only the cero 
frequency on (23) has a value different from cero 
(equal to one due to the power normalization. 

The power level estimate is found as the 
maximum λ  of the following problem: 
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As it is expected this power level estimate shows 

the same reliability and low resolution that it 
experiences for detecting a single line spectrum.  

In (25) the filter A  proves that we can measure at 

its output a power level equal to ARAH ..  which, 
thanks to the frequency response of the filter is 
proportional to the output power when the candidate 
spectrum is the only contribution to the input 
spectrum. 
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Thus, the power level estimate can be viewed as 
the power output of the filter, normalized by the 
response to the candidate spectrum. 
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In order to compute the noise bandwidth of the 

filter, we need to assume that the background noise 
of the input spectrum is white with power density 
No. In this case the power level estimate is formed 
by the contribution of the candidate plus the white 
noise density multiplied by the equivalent white 
noise bandwidth. 
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Since the filter is an eigenvector which norm is 

one. The noise bandwidth is 
( ) ASAH ..

1
ψ

. 

 
In summary, the spectral estimation procedure is 

summarized below: 
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Needless to say that the response, mainly of the 
density estimate, depends on how close in geodesic 
distance terms is the candidate spectrum with the 
actual component within the data matrix. At the 
same time, those components, which are far away 
from the candidate, will not be shown by the density 
estimates. Also, it is worthwhile to remark that the 
procedure reduces to classical spectral estimation 
when the candidate spectrum is a single line (i.e. 
correlation matrix of the candidate is all ones). 
 
 
6 Simulations 
In order to illustrate the performance of the 
procedure, a data record of 800 samples 
corresponding to the case of two unmodulated 
carriers in white noise is analyzed. The SNR of the 
carriers are 2 and 10 dB respectively, the frequencies 
of the carriers are 0.2667 and 0.4, and the filter is 8. 
The candidate spectrum is )8,8(.onesγ . Note that 
this case corresponds with classic spectral 
estimation. The periodogram is also included in the 
plot for reference. Figure 1 contains the 
periodogram, power level and power density 
obtained with the procedure. As mentioned 
previously the periodogram is above the power level 
and the power level is above the density estimate. 

Next, the unmodulated carrier at 0.2667 is 
replaced by a wideband spectrum uniformly 
occupying the frequency range of 0.1142 up to 
0.4192 yet preserving the same signal to noise ratio 
of 2dB. Figure 2 illustrates the performance of 
traditional periodogram, power level and density 
estimates. As it can be viewed only the unmodulated 
carrier is detected with an increased floor on its left 
corresponding to the wideband spectrum. 
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Fig. 1. Top-Down, Periodogram, Power level 

estimate, Spectral density estimate for a candidate 
spectrum equal to an unmodulated carrier. 
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Fig. 2. Top-Down, Periodogram, power and density 
estimates (traditional spectral estimates) and with a 

wideband (Bandwidth 0.25) centred at 0.2667. 
 

Changing the candidate spectrum to the wideband 
spectrum with the same bandwidth the situation 
changes and as can be viewed in Figure (3) the 
unmodulated carrier disappears meanwhile a clear 
peak appears in the central frequency of the 
candidate spectrum. Note that the power level 
indicates 1.9 dB. (Actual 2dB.) and the density peaks 
close to the actual location. In any case, the 
performance is remarkable. 
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Fig. 3. Density estimate (solid) and power level 
estimate (dashed) when using a wideband candidate 

of the same bandwidth. 
 

Figure 4 shows the performance of the procedure, 
compared with traditional estimates, when the power 
of the wideband signal increases up to 12 dB. 
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Candidate estimates

Frequency  
Fig. 4. Estimates corresponding with figures 2 
(upper) and 3 (lower) when the power of the 

wideband signal is 12 dB. 

Finally, for a candidate spectrum equal to a BPSK 
candidate of five samples per symbol using 
rectangular NRZ signalling, the candidate correlation 
is just a triangle of four samples per side and 
maximum one at the cero lag. Note that this spectral 
candidate is valid also for QPSK, MSK and QAM 
whenever the baud rate and the pulse shaping are the 
same. Figure 5 depicts the results for the case that 
the BPSK signal has a power of 12 dB. above white 
noise power level. The rest of the data for these 
graphics are the same as before.  
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Fig. 5. Traditional (upper) Candidate (lower) for a 
BPSK signal centred at frequency 0.1 together with 
an unmodulated carrier at 0.4. Power levels above 

noise power of 12 and 10 dB. respectively. 
 

7 Conclusions 
A generalization of the filter bank analysis for 
spectral estimation has been generalized, providing 
power level and density estimates of spectral 
components. The shape and bandwidth of the 
spectral component, referred as the candidate 
spectrum, is introduced in the filter bank framework 
just in the same manner that single spectral lines are 
used to scan the input data in order to estimate power 

Proceedings of the 11th WSEAS International Conference on COMMUNICATIONS, Agios Nikolaos, Crete Island, Greece, July 26-28, 2007         196



and density. The quality of the estimates reported 
depends directly on the geodesic distance of the 
correlation matrix of the spectral component present 
in data with the corresponding matrix of the 
candidate. 
 

The procedure was motivated to solve the 
problem faced in cognitive radio systems where 
different spectral labelling has to be provided to 
licensed users neglecting, at the first stage other non-
licensed users or interferers.  

 
Finally, the framework reported provides a 

different view of major spectral estimation methods 
including frequency detectors and parametric 
spectral estimation procedures. 
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