Proceedings of the 11th WSEAS International Conference on SYSTEMS, Agios Nikolaos, Crete Island, Greece, July 23-25, 2007 1

Optimal Control of a Three Phase Hydrogenerator using a Class of
Sampled-Data Controllers

AK.BOGLOU' and K.G.ARVANITIS’

" School of Applied Technology
Technological Educational Institute of Kavala
Agios Loucas, 65404 Kavala
GREECE

* Department of Natural Resources Management and Agricultural Engineering, Laboratory Division
of Agricultural Machinery and Automation
Agricultural University of Athens
Iera Odos 75, Botanikos 11855, Athens
GREECE

Abstract: - An optimal control strategy based on Two-Point-Multirate Controllers (TPMRCs), is used to
design a desirable excitation controller of a hydrogenerator system, in order to enhance its dynamic stability
characteristics. In the TPMRCs based scheme, the control is constrained to a certain piecewise constant signal,

while each of the controlled plant outputs is detected many times over a fundamental sampling period T, . The

proposed control strategy is readily applicable in cases where the state variables of the controlled plant are not
available for feedback, since TPMRCs provide the ability to reconstruct exactly the action of static state
feedback controllers from input-output data, without resorting to state estimators, and without introducing high
order exogenous dynamics in the control loop. On the basis on this strategy, the original problem is reduced to
an associate discrete-time LQ regulation problem for the performance index with cross product terms
(LQRCPT), for which a fictitious static state feedback controller is needed to be computed. Simulation results
for the actual 117 MVA hydrogenerator unit in Sfikia, Greece, show the effectiveness of the proposed method
which has a quite satisfactory performance.
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estimation methods. However, estimator based
controllers, have their own disadvantages. First of
all, the number of states of the estimator and of the
system must be, in most cases, the same, and the
estimator must run on-line. When the controlled
system is of high order, this implies high
computation in the controller. On the other hand,
whereas continuous state feedback methods are able

1 Introduction

The dynamic stability enhancement of an open-loop
power system model, linearized about its nominal
operating point may be achieved by designing a
suitable excitation controller and thus obtaining a
closed-loop system with desired dynamic stability
characteristics. The actual design of such controllers
may be accomplished by using various modern

control methods. Among them, LQ optimal control
methods have received considerable attention in the
past (see e.g. [1]-[8]). Most of these optimal control
techniques, however, suffer from several serious
disadvantages.

More precisely, they are applicable, under the
condition that full state feedback of the plant under
control is measurable and available for feedback, a
fact that is rarely satisfied in practice. In the case
where only output measurements are available, one
can use, instead of the system states, their estimates,
obtained from anyone of the classical state

to meet the robustness objective, it has been shown
that the introduction of state estimator negates this
advantage. Even though some level of robustness
may be recovered, robustness using and estimator
based controllers is still an open research topic.
Furthermore, most of the traditional LQ optimal
regulation methods are directly applicable to the
continuous-time system under control. However,
digital control design through microprocessor is,
today, the state of the art in control systems
technology.

Thus, in order to incorporate the recent advantages
of the digital computer technology in optimal
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techniques for power systems control, on has either
to make the controller synthesis in continuous time
and then to discretize the control law or to make the
controller synthesis in discrete time after
discretizing the continuous-time system under
control. However, neither of these approaches take
into account the intersample behavior of the
continuous-time signals. Their use is, therefore,
mainly restricted to cases when the sampling
frequency is significantly higher than the design
bandwidth.

From the previous analysis, it is clear that optimal
control techniques, which do not need the state
variables of the system under control or their
estimates and which are directly applicable in digital
environment, are of great importance in power
systems control. In the present paper, a new
feedback strategy of this kind is presented. We refer
to this novel control strategy as a Two-Point-
Multirate Controller (abbreviated here as TPMRC).
TPMRC based control is a rather typical multirate
control strategy where control (actuators) updates
are performed at different rates than the output
samples.

Multirate sampling schemes have long been the
focus of interest by many control designers. There
are several reasons to use such a sampling scheme in
digital control systems. First of all, in complex,
multivariable control systems, often it is unrealistic,
or sometimes impossible, to sample all physical
signals uniformly at one single rate. In such
situations, one is forced to use multirate sampling.
Furthermore, in general, one gets better performance
if one can sample and hold faster. But faster A/D
and D/A conversions mean higher cost in
implementation. For signals with different
bandwidths, better trade-offs between performance
and implementation cost can be obtained using A/D
and D/A converters at different rates.

On the other hand, multirate controllers are in
general time-varying. Thus multirate control
systems can achieve what singlerate cannot; e.g.
gain improvement, simultaneous stabilization and
decentralized control. Finally, multirate controllers
are normally more complex than singlerate ones; but
often they are finite-dimensional and periodic in a
certain sense and hence can be implemented on
microprocessors via difference equations with
finitely many coefficients. Therefore, like singlerate
controllers, multirate controllers do not violate the
finite memory constraint in microprocessors. In
particular, the control strategy presented here is
essentially a combination of the control strategies
reported in [9], [10]. The control is constrained to a
certain piecewise constant signal, while the

controlled plant output is detected many times over
a fundamental sampling period. The proposed
control strategy relies on solving the continuous LQ
regulation problem.

TPMRCs provide the ability of the exact
reconstruction of action of the state feedback
without resorting to the design of state estimators,
and without introducing high order exogenous
dynamics in the control loop. Based on this strategy,
the original problem is reduced to an associated
discrete-time LQ regulation problem for the
performance index with cross product terms, for
which a fictitious static state feedback controller is
needed to be computed. Thus, the present technique
essentially resort to the computation of simple gain
controllers in a digital environment, rather than to
the computation of state observers, as compared to
known techniques. Finally, the designed TPMRCs
based LQ optimal regulators can possess any
prescribed degree of stability, since there is the
possibility to choose the transition matrices of the
controllers arbitrarily.

In this paper, the proposed optimal control strategy
is used to design a desirable excitation controller of
a hydrogenerator system, for the purpose of
enhancing its dynamic stability characteristics. The
particular hydrogenerator studied in the paper, is a
117 MVA hydrogenerator unit of the Greek Electric
Utility Power System, which is installed in Sfikia,
near Veria, Emathia, Greece and which supplies
power through a step-up transformer and a
transmission line to an infinite grid. The proposed
optimal control design is based on linear state space
models of the hydrogenerator, obtained by
linearizing its nonlinear Park’s equation [11], [12],
about a particular operating point. Simulation results
regarding the application of the proposed technique
to the linearized stac-space model of the
hydrogenerator unit clearly show the effectiveness
of the method and a significant improvement of the
dynamic performance of the system.

2 LQ Regulation using Two-Point
Multirate Controllers

Consider the continuous-time, linear, time-invariant,
multi-input, multi-output (MIMO) system described
in state-space by the following equations

x(t) = Ax(t) + Bu(t) , y(t) =Cx(t) (1)
where, X(t) € R" is the state, u(t)e R™ is the
input and y(t) € R" is the output of the system and
where all the matrices have real entries and
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appropriate dimensions. It is further assumed, that
system (1) is controllable (stabilizable) and
observable (detectable).

The following definitions will be useful in the
sequel.

Definition 1. Let c =1,2,..

the matrix C. For an observable matrix pair (A, C) ,

., , be the ith row of

a collection of p integers {nl, n,,-, np}, is called

an observability index vector of the pair (A,C), if
the following relationships simultaneously hold

zp:ni:n,rank[cl (AT)"“'CI e, e (AT)""flcp]:n
i1

Definition 2. The generalized reachability
Grammian of order N on the interval [0,T,] is

defined by

W, (T,,0)= ZA 2)
where
To=-2 ., A, 2AV" B, (3a)
and where, in (3a),

Ty
AN = exp(ATN) , BTN = J-exp(Ar)Bdr (3b)

0
Now, define p, =rank Wy (To ,0).

Since W (TO,O)Z 0, we can always find (perhaps
not uniquely) an nxp, full rank matrix B such
that

Wy (To ’0) = BNBL “4)
It is worth noticing at this point that matrix B, can

be computed as follows:

a) If Wy (TO,O) is positive definite, then B can be
obtained from the Clolesky factorization of
Wy (TO,O). That is, if S is an upper triangular full
Cholesky

factorization of Wy (TO,O) (i.e. S is such that
STS = Wy (TO,O)) and Ug is a unitary matrix (i.e.
UgUS =1), then

B, =S"U] (5a)
b). If Wy (TO,O) is positive semidefinite, then we

can proceed as follows: Let a Singular Value
Decomposition of Wy (TO,O) be defined as

rank matrix obtained from the

WN(TO,O)=UFO 3}VT where  UeR™™,

Ve R™
defined by X’ :diag{cl,cz,...,GpN}, where G,
=12,...

WN(TO,O). Since, by definition, WN(TO,O) is a

symmetric matrix, we have U=V. Let M):‘ be an

. . * .
are unitary matrices and £ € R"™™ g

,py are the nonzero singular values of

upper triangular full rank matrix obtained from the
Cholesky factorization of %" (i.ec. M;ME* =)

Now, let M, € R™" be constructed as
=M. 0]

MTM. - 0

wlw 0 0

W, (T,,0)=UM{M,, U"
Consequently,
B, —UMLV' (5b)

In the sequel, let matrix ®, be defined as
@ =exp(AT,)

Let, also, BY

Then,

and

be the nxp, full rank matrix

defined as the right pseudoiverse of BL e
c —1
By :BN(BLBN) (6)

MULTIRATE SAMPLING

7(kTo)
K |
L_I¥
MULTIRATE SAMPLING

Figure 1. Control of linear systems using Two —Point Multi
Rate Controllers.

Consider now applying to system (1) the multirate
control strategy depicted in Figure 1. In particular,
we assume that all samplers start simultaneously at

t=0. The hold circuits H, and H, are zero order
holds with holding times T, and T, respectively.

The inputs of the plant are constrained to the
following piecewise constant controls

u(kT, + 4Ty, +¢)= TN’IAT”BLIEQkTO) , u(kT,)e R™
(7)

for
t =kT, +uTy,u=0,1,...N-1,k >0andfor{ [0, Ty).

The ith plant output y,(t),

_T,
= K/Ii , such that

is detected at every
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y,(kT, +pT,)=¢/x(kT, +pT,) , p=0,1,...,M, —1
®)

where, M, eZ",i=12,...,p, are the so-called

output multiplicities of the sampling.

It is worth noticing that, in general, M, # N . That

is, multirate sampling of the plant inputs and outputs
may be performed at a different rate.
The sampled values of the plant outputs obtained

over [kTO , (k + I)TO ), are stored in the M -
dimensional column vector ?(kTO) of the form
?(kTo ) = [yl (kTo) Yi (kTo + (Ml - I)Tl ) Yy (kTo)

y, (KT, + (M, - 1)Tp)]T
where

M =ZP:Mi :
i=1

The vector f/(kTO) is used in the discrete dynamic

control law of the form
i[(k + 1)1, ]= L (KT, ) - K7 (KT, ) ©)

v
where L, € R™W™ K e R™™ .

The multirate control strategy described above will
be mentioned in the sequel as a Two-Point-Multirate
Controller (abbreviated here as TPMRC).

The multirate optimal scheme suggested in this
paper is based on solving the continuous-time LQ
regulation problem with the control strategy of
Figure 1. More precisely, the control objective is to
find an optimal u(t) constrained by (7) and (9),

which, given the initial value y(0), minimizes the
cost function

1= [ oo+ oraoke o

Note that in (10), Qe R”" andI" € R™™" are
symmetric matrices with Q>0,I" >0, while

(A, C TQC) is an observable (detectable) pair.

To find a solution to the aforementioned LQ optimal
regulation problem via TPMRCs, observe first that

since u(t) is a function of ﬁ(kTO), the problem
considered in this Section, is essentially the problem
of finding an optimal 1, (kTO)e R™, k>0,

which minimizes (10). Moreover, since ﬁ(kTO)

obeys (9), the LQ optimal regulation problem
considered here, can be reduced to the determination
of the optimal gains L, and K which minimize

(10). These optimal gains can be determined using
the following procedure:

Observe first that the following relationship hold
(see [9] for its derivation)

X(KT, +1T, +&) =exf ATy, + QMK T, + B (1 o)k T,
()

where
Bl (1,0)= T3 fexp(AC)V) +B.ALBL  (12)
In (12), the matrices V, and ﬁg are defined as

follows

-y, KT, . -1, )’
5i(=T At (%N%T(TN) (13)

i i

¢
B, = [exp(AL)BdA
0
where, in (13), matrix @, (TN) is defined as follows

®H(TN):[ETN ANﬁTN A;_lﬁTN]

It is pointed out that

B, (N-1,T,)=B,
Therefore, at the sampling instants t = kT, we can
easily obtain
x[(k + )T, ] = ®x(kT, )+ B a(kT,) (14)
Note also that, at every
t=kT, +pT,,p=0,1,..,M, —1, we have
X(kTo +pT, ) = Afx(kTO )"’ Bﬂlﬂv[i (p)ﬁ(kTo ) (15)
where
Ai = exp(ATi)
By, (p)=Ty'Ey, (p)BY (16)
In (16), matrix E; (p) is defined as follows

a(i,p)-1 (J+DTy N
Ew (o)=Y | GXDHPVTN —§J}Bd§AT,-+
=0Ty i

N
—T
PMi N

N
I exp{A[p—TN —fj}BdeTa(i’p) (17)
a(i,p)Ty Mi
where

a(i,p) = INT{pMEJ

1

and where INT{ (v) is the greatest integer that is

less than or equal to v e R™.
Now, define the following matrices
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jexI{ATa)c QCexp{AE)de = Z(A”) =(T, )AY

(18)
G =S (55 Tt v; ron o

(19)
T =T (B, ){ \4 A[:(T) NTA()Z)TFIH}BL

where

2(Ty) = fexp(ATé)CTQC exp(AE)E  (21)

A(T,)= j exp(ATE)CTQCB, dg 22)
0

N(Ty)= j B!C'QCB.d¢ (23)
0

It is pointed out that matrices E(TN ), A(TN) and

~

N (TN) (and consequently matrices (~)N, G, and

f'N ), can be easily computed on the basis of the

algorithm reported in [13].
Now, substituting (1), (7) and (11) in (10) and
taking into account (18)-(23), we finally obtain

sk sl

J=—
N

(24)
>From the previous analysis, it becomes clear that,
the original optimal LQ regulation problem has been
reduced to an associated LQ optimal regulation
problem for the performance index with cross-
product terms (abbreviated here as LQRCPT),
namely, the problem of finding a TPMRC of the
form (7), (9), which minimizes the performance
index (24) subject to the dynamic -constraints
defined by equation (14).
In the sequel, the nature of the control law (9) will
be explained. To this end, we establish the following
fundamental Theorems.

Theorem 1. The following basic formula of the
multirate sampling mechanism holds

Hx[(k +1)T, ] = 9(kT,) - Da(kT,) , k>0 (25)
where, matrices
x(kT, +pT,)= AP™x[(k + )T, ]+ B, &

are defined as follows

(kT,)

CIT (A}VI' )_ clTBl 0
CITA;I clTBlMl—l
H= : , D= : (26)
~M. ¢! TH
cg(Ap p) chp 0
A T ~
o Ay | ek,

and where, in (26),
Yi (kTo +pT, ) = ciTA?_Mi X[(k + l)To ] + ciTﬁi,pﬁ(kTo )
27)
Proof: Solving (14) for x(kTO) and substituting its
solution in (15), we obtain
x(kT, +pT,) = AP x][(k + )T, ]+ B, a(kT,)
(28)
where, in producing (28), use was made of the fact
that @ = AM . Introducing (28) in (8), yields
Yi (kTo +pT, ) = ciTA?_Mi X[(k + 1)To ] + ciTﬁi,pﬁ(kTO)
(29)
for p=0,L,...,M, —1. Moving the terms containing
X[(k + l)TO] to the left hand side, moving the terms
of yi(kT0 + pTi) to the right and expressing the
equations for p=0,1,....,M; —1 by a vector matrix
form, we finally obtain (25).

Theorem 2 [14]. Let n,,i=1,2,..,p, be positive
integers which comprise an observability index
vector of the observable pair (A,C). If
M.,i1=1,2,..

then the matrix H has full column rank.

,p are chosen such that M; >n;,,

Theorem 3. Let (A, C) be an observable pair and
M, =2n;,1=12,...

almost every sampling period T, we can make the

suppose that ,p. Then, for

control law (9) equivalent to any static state
feedback control law of the form

a(kT,) = -Fx(kT, ), fork > 1 (30)
by choosing suitably the controller pair (K, L, ),

such that
KH=F , L, =KD 31

Proof: Pre-multiplying (25) by K, we obtain
KHx[(k + 1)T, | = K§(kT, ) - KDa(kT,) , k >0

Therefore, the control law (9) becomes equivalent to
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the state feedback law (30), if, for the matrix K, the
first of equations (31) holds, and if we evaluate L
by the second of (31). Since by Theorem 2, the
matrix H has full column rank if we select
N. >n,,i=L2,..,p, then for almost every T,

there exists a matrix K, fulfilling (31).

Theorem 4. Let (A, C) be an observable pair and
suppose that for some M, = n?,i =12,...,p such

that M’ >2n+py, the matrix [H D] has full

column rank. Then, for almost every sampling
period T, there exists a matrix K such that

K[HD]=[FL,] (32)
where F is an arbitrarily specified matrix
corresponding to any desired state feedback and L
is an arbitrarily specified matrix corresponding to

the desired state transition matrix of the controller
(9) itself.

Proof: From (31) and for L, having a prespecified
value we obtain (32). If for some M, =n.,
i=1,2,...,p, such that M > n+py, the matrix

[H D] has full column rank, then (32) is solvable

with respect to K, for almost every sampling period
T,.

Remark 1. In Theorems 3 and 4, the term “for
almost every sampling period T, is used to shortly
express the fact that the assertion fails only at
isolated values of T .

>From the previous analysis, it becomes clear that,
we can equivalently realize any desired static state

feedback matrix F by a dynamic controller of the
form (9), possessing any prescribed degree of
stability, since we can choose the matrix L, (which
corresponds to the transition matrix of the controller
itself) arbitrarily. The choice L, =0 is of course
permissible, leading to static TPMRCs of the form

il(k +1)T, | = -Kj(kT, ) (33)
It becomes also clear that, in order to find a control
law of the form (9) which minimizes the
performance index (24), one has essentially to refer
to an easier problem, i.e. to the design of a fictitious

static state feedback law of the form (30), which has
an equivalent action. The calculation of the matrix

pair (K, Lu) is then performed by using either (31)
or (32), after choosing a desired (usually stable)

matrix L .
A state feedback law of the form (30) that
minimizes the index (24) is well known to be [15]

F=(C, +B!PB,) (G, +B.PO) (34)

where P is the symmetric positive definite solution
of the following discrete algebraic Riccati equation

P=0'PO+Q, -
(G, +o"PB, T, +BLPB, )" (G + B, PD)
(35)
Note that the solvability of (35) and the asymptotic
stability of the corresponding closed-loop system are

assured by the following Lemmas, whose proofs can
be found in [9].

Lemma 1. Matrix I:N is positive definite if

I'>00rC'QC>0.

Lemma 2. Define
QN = QN _GNF;IIG;

Then, matrix Q is positive semidefinite.

Lemma 3. There exists a unique positive definite
solution P of (35) and the corresponding closed-loop
system with closed-loop system matrix

O, =0-B,F=0-B KH (36)
is asymptotically stable if (and only if) (A,B) is
controllable (stabilizable) and (A, CTQC) is

observable (detectable).
If a fictitious state feedback matrix F has been
determined on the basis of (34), the TPMRC matrix

pair (K,Lu), in the case where L, is not

prespecified, can be obtained as follows:

Case 1 (Mi :ni): In this case, matrix H is
nonsingular. Therefore,

K = (T, +BLPB, )" (G, +BLPOJH" |
L, =(T, +BLPB,)'(G, +BlPOH'D (37)

Case 11 (Mi > ni): In this case,

= T 1 (= T /
K =(T, +BLPB, ) (G, +BIPOH'  (38)
L, =(, +BPB, ) (G, +BLPOH'D (38b)

where H' is the left pseudoinverse of matrix H (i.c.
the matrix fulfilling H'H =1).
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Similarly, in the case where L is desired to have a
prespecified value, one can easily obtain

K- [(fN +B.PB, ) (G, +B.POD) LJH’ (39)
where

H' is the left pseudoiverse of matrix [H D).

3 Hydrogenerator system model and

simulation results

In the present work, the aforementioned optimal
control strategy is used to design a desirable
excitation controller of a hydrogenerator system, for
the purpose of enhancing its dynamic stability
characteristics. The hydrogenerator system studied,
is an 117 MVA hydrogenerator unit of the Greek
Electric Utility Power System, which is installed in
Sfikia, Himathia, Greece and which supplies power
through a step-up transformer and a transmission
line to an infinite grid. A linear model of the
hydrogenerator can be obtained by linearizing its
nonlinear Park’s equations [11], [12] about various
operating points. By mathematically eliminating the

damper circuit currents i, and i, and the field

current 1, from the standard Park’s equations one

obtains, after some algebraic manipulations, the
following modified practical form of these equations
in state variable form

a:(’)_@o (40)

do _ oy | {xad(xad—xn)q,

dt 2H X2 —XxpX,

2
X

X (X, —X ) X .
+ ad( ad f)LPD:|1 + aq\Pl

q Q'd
Xad ~XpXg

Q
%3 _x?2 - x>
Xad ~ XaXp — Xyg Xy aq | .
+| X4 — 5 — X, —— [ig,
Xad —XpXy XQ

(41)

dl{jf: 0 R X yo_ O R X Wy
dt X2 = XX, ! X2 = XpX; b

R —
Efd _|:0)0 f;(ad(xad XD):|id (42)

o, R

X ad Xad — XpXg

d¥ o,Rpx, ®,R ,x
D:( 0*“D dzjlljf_( 0"“D*f J\PD
d

2
dt X Xp —X XeXp —Xog

a

(DORD(Xad - Xf) .

> 1, (43)
XfXD _Xad
d¥ o,R 0,RoX,, .
dQ:— e R (44)
t Xq Xq
dE K 1 K
“ :_EVref __Efd - : x

dt T, TV,

Te
2
X, X
—— ‘I’Q+{x - aq} -R,iy vq
q q a
Xq Xq

+|:Xad(Xad _XD)\Pf + X og (X g _Xf)\P

P 2 D
X~ XpXg X ~XpXg

al a

2 a‘q [Vq
X ~ XpXg

2% —x2x, —x2X, ). .
+(—xd+ o —adtb Ll —R,i, |V

where, 0 is the torque angle, ® and ®, are the

machine and synchronous speed, respectively, H is
an inertia constant, T_ is the generator-shaft

m

mechanical torque, X, and X are the

aq
magnetizing reactances in d- and g-axis, X, and Xq
are the damper circuit self-reactances in d- and g-
axis, X, is the field winding self-reactance, ¥, is

the field flux linkage, ‘¥, and ¥, are the damper
circuit flux linkages in d- and g-axis, i, and i, are
the stator currents in d- and g-axis circuits, X, and
X, are the machine synchronous reactances in d-
and g-axis, R, is the field resistance, E is the
exciter output voltage, R, and R, are the damper
circuit resistances in d- and g-axis, T, is the exciter

time constant, K_ is the exciter gain, v, is the

(5]
machine terminal voltage, R, is the phase stator
resistance, v, and v are the stator voltages in d-

and g-axis and V_; is the voltage reference.
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MVA =117 R, =o0.014
kV=15.75 R, =0.008
RPM = 125 R, =0.002
X 4 =0.935 H =3
X, =0.574 K, =50
X4 =0.827 T, =0.05
X 4q = 0475 ®, =314.1593
X, =0221 1, =06652
Xp =0.992 1, =0.7467
Xy =0551 V, =09242
R ; =0.0006 Vg =0.3819

Table 1. Principal hydrogenerator system data.

The principal data of the three phase hydrogenerator
system under control is given in Table 1. Note that,
in Table 1, all unspecified data is in p.u. on machine
ratings, the time constants and the inertia constant of
the generator and the prime-mover are in secs, while
the synchronous speed is in rad/sec. Note also that
the linkage reactances in d- and qg-axis are given by

X,4=0.095 p.u. and x,,=0.076 p.u.. The resistance

and the reactance of the external system, consisting
of the step-up transformer and the double-circuit

transmission line are given by R, =0.015p.u. and

X.=040p.u..

Vi P, Q: Onom ®nom
p.u. p-u. p.u. rad rad/sec
O.P.1 1.0 0.9 0.436 0.8024 100m
O.P. 11 1.0 1.1 0.5 0.9604 100m
O.P. 1II 1.0 0.5 0.58 0.4592 100m
O.P. 1V 1.0 0.4 -0.68 0.4914 100m
‘lll',nom \I‘D,nom \I‘Q,nom El'd,num
p-u. p.u. p-u. p.u.
O.P. 1 1.44005 1.0062 -0.3160 1.6123
O.P. 11 1.4737 1.0001 -0.3645 1.7720
O.P. 111 1.4802 1.0508 -0.1740 1.6069
O.P. 1V 1.0107 0.8842 -0.2911 0.4734

Table 2. Some operating points of the hydrogenerator system

Defining the following vectors
x=[A5 Ao AW, A¥, A¥, AE,[

u=AV, , y=[As Aol
after linearization of the nonlinear equations (40)-
(45), with respect to a nominal operating point of the
system, we obtain a linear state space model for the

hy-drogenerator. Note that, A defines incremental
changes of the variables, involved in the description,
around the particular operating point chosen for the
linearization procedure. Some of the operating
points of the hydrogenerator unit are given in Table
2, wherein P, and Q, denote the active and the

reactive generator power.

In this study we consider linearization about
operating point II. After linearization we obtain a
linear state-space model of the hydrogenerator, of
the form (1), with

0o 1 0 0 0 0 |
~72654 0 —19926 —46354 —41242 0
A_| 0066 0 -0641 0493 0003 0228
-3586 0 11494 1956 013 0
~2051 0 —0032 -0074 -7867 0

123886 0 —176154 —409789 264883 —20 |
B=[0 0 0 0 0 1000],

1 000 0O
C=
0O 1 00 0O
As it can be easily checked the above linear state

space model is unstable, since matrix A has two
unstable complex eigenvalues at

A, =0.0931+ j7.7898. Note also that the states

WV, ¥, and YW, are not measurable quantities.

Therefore, the traditional LQ optimal control
strategies of [1]-[8] are not applicable in the present
case.

In the sequel, a simulation study of the proposed
multirate LQ optimal regulation technique on the
basis of the above model is performed. The control
objective is to minimize the performance index (10)

with Q = diag{0.01,0.001} and T = 1, using a
TPMRC of the form (7), (9). To this end, we
discretize the open loop system with sampling

period T =1 sec. As it can be easily checked, a set
of observability indices of the pair (A,C) is given by
(n,;,n,)=(1,5). Then, we can choose the output
multiplicities of the sampling as M, =2 and
M, = 6. The input multiplicity of the sampling is
selected as N,=6. Application of the proposed
technique yields
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K=10"x
112 =7 -4 -38 24 -34 -156 59
-36 16 -1 -9 -12 53 -92 -136
-42 -4 -1 -15 =517 =11 -19 =56
-10 -2 0 -4 3 -7 -11 16
-6 -3 0 -3 4 -11 -3 25
-7 1 0 -2 0 1 -11 -5
[—282 —2560 3474 235 —-1605 139]
2104 —436 2788 —2847 —887 —423
—-294 —999 1148 352 -578 93
172 =255 211 208 -116 44
339 212 7 414 33 76
| 104 —121 259 -129 -115 —17|

The closed-loop system has N, =6 eigenvalues at

L, =10"x

the origin and the eigenvalues of @ —BNOKH ,
which have the following values
A, =-0.0438+ j0.6693 ,
Ay =0, A, =0.0005 ,
As=0.0011,1, =0.3882

and obviously lie inside the unit circle. Moreover,

matrix L, has the eigenvalues

A, =0.0295+ j0.2636, A, =0.0001 and
A,s6=0. That is strong stabilization is achieved.

=60.8365.

Note that, the optimal average cost in the case where
a continuous-time static state feedback LQ optimal
regulator is to be designed has the value

1 =29.7225.

Finally, the optimal average costis J

2081 JOpt
29.8f
29.79f
20780
29.77f
29.767
29.75[

A

29.741 J

29.731 l

29.72 ; ; ; ; | | ;
5 10 15 20 25 30 35 40 45

Figure 2. J,, and 7 versus N, for To=02.

J

opt
387

36[
34[
32f
301

281

| T, (sec)

0 0.2 0.4 0.6 0.8 1 12

Figure 3. Jo, versus Ty .

Alternatively, with a sampling period T, = 0.2 sec

and the same values for the other design parameters,
we obtain

K=10"
40 —54 500 —2556 3748 153 4189 236]
118 —126 253 —1244 1677 198 1787 832
111 114 —99 458 —517 —157 486 91
“|_44 —45 17 —65 30 58 4 79
2 22 -9 38 24 29 8 33
9 9 -4 16 -10 -12 3 14

382 1116 1023 —1238 —440 6 |
211 724 193 -572 -188 -7
—94 -392 142 186 53 9
21 108 -110 -16 0 -4
-11 -56 52 11 1 2
-5 -23 22 5 1

L, =10"x

The eigenvalues of the closed-loop system are
N, = 6 eigenvalues at the origin and

his =—0.0002+ j0.7998 ,
Ay = 00678+ j01877 A5 =0.0060,A, =0.2797

which lie inside the unit circle. In this case, matrix
L, has the eigenvalues A, =0.0617 % j0.0249

and A,,s,=0 and strong stabilization is once

again achieved. Finally, the optimal average cost is
J,.. =29.8050.

opt
In Figure 2, the variation of the optimal average cost
with respect to N, is depicted for the case where

T, =0.2. Finally, in Figure 3, the variation of the
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optimal average cost with respect to T, is given.

>From the previous simulations, one can readily
conclude that the proposed multirate method can be
easily implemented in digital environment and that
it is more effective in reconstructing the action of
the sate feedback than estimator based techniques.
The proposed technique provides a optimal average
cost close to that provided by the continuous-time
state feedback LQ regulator, particularly in cases
where the input multiplicity of the sampling is large
or the sampling period is fast enough. Finally, the
proposed technique provides a smaller optimal
average cost as compared to the singlerate control
case (i.e. the case where Ny=1).

4 Conclusion

An optimal control strategy based on Two-Point-
Multirate Controllers has been used in this paper in
order to design a desirable excitation controller of a
unstable hydrogenerator system, for the purpose of
enhancing its dynamic stability characteristics. The
proposed method offers acceptable closed loop
response as well as more design flexibility
(particularly in cases where the system states are not
measurable), and its performance is at least
comparable to known LQ optimal regulation
methods.
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