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Abstract: - An optimal control strategy based on Two-Point-Multirate Controllers (TPMRCs), is used to 
design a desirable excitation controller of a hydrogenerator system, in order to enhance its dynamic stability 
characteristics. In the TPMRCs based scheme, the control is constrained to a certain piecewise constant signal, 
while each of the controlled plant outputs is detected many times over a fundamental sampling period . The 
proposed control strategy is readily applicable in cases where the state variables of the controlled plant are not 
available for feedback, since TPMRCs provide the ability to reconstruct exactly the action of static state 
feedback controllers from input-output data, without resorting to state estimators, and without introducing high 
order exogenous dynamics in the control loop. On the basis on this strategy, the original problem is reduced to 
an associate discrete-time LQ regulation problem for the performance index with cross product terms 
(LQRCPT), for which a fictitious static state feedback controller is needed to be computed. Simulation results 
for the actual 117 MVA hydrogenerator unit in Sfikia, Greece, show the effectiveness of the proposed method 
which has a quite satisfactory performance.  
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1   Introduction 
The dynamic stability enhancement of an open-loop 
power system model, linearized about its nominal 
operating point may be achieved by designing a 
suitable excitation controller and thus obtaining a 
closed-loop system with desired dynamic stability 
characteristics. The actual design of such controllers 
may be accomplished by using various modern 
control methods. Among them, LQ optimal control 
methods have received considerable attention in the 
past (see e.g. [1]-[8]). Most of these optimal control 
techniques, however, suffer from several serious 
disadvantages. 
More precisely, they are applicable, under the 
condition that full state feedback of the plant under 
control is measurable and available for feedback, a 
fact that is rarely satisfied in practice. In the case 
where only output measurements are available, one 
can use, instead of the system states, their estimates, 
obtained from anyone of the classical state 

estimation methods. However, estimator based 
controllers, have their own disadvantages. First of 
all, the number of states of the estimator and of the 
system must be, in most cases, the same, and the 
estimator must run on-line. When the controlled 
system is of high order, this implies high 
computation in the controller. On the other hand, 
whereas continuous state feedback methods are able 
to meet the robustness objective, it has been shown 
that the introduction of state estimator negates this 
advantage. Even though some level of robustness 
may be recovered, robustness using and estimator 
based controllers is still an open research topic. 
Furthermore, most of the traditional LQ optimal 
regulation methods are directly applicable to the 
continuous-time system under control. However, 
digital control design through microprocessor is, 
today, the state of the art in control systems 
technology. 
Thus, in order to incorporate the recent advantages 
of the digital computer technology in optimal 
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techniques for power systems control, on has either 
to make the controller synthesis in continuous time 
and then to discretize the control law or to make the 
controller synthesis in discrete time after 
discretizing the continuous-time system under 
control. However, neither of these approaches take 
into account the intersample behavior of the 
continuous-time signals. Their use is, therefore, 
mainly restricted to cases when the sampling 
frequency is significantly higher than the design 
bandwidth.  
From the previous analysis, it is clear that optimal 
control techniques, which do not need the state 
variables of the system under control or their 
estimates and which are directly applicable in digital 
environment, are of great importance in power 
systems control. In the present paper, a new 
feedback strategy of this kind is presented. We refer 
to this novel control strategy as a Two-Point-
Multirate Controller (abbreviated here as TPMRC). 
TPMRC based control is a rather typical multirate 
control strategy where control (actuators) updates 
are performed at different rates than the output 
samples.  
Multirate sampling schemes have long been the 
focus of interest by many control designers. There 
are several reasons to use such a sampling scheme in 
digital control systems. First of all, in complex, 
multivariable control systems, often it is unrealistic, 
or sometimes impossible, to sample all physical 
signals uniformly at one single rate. In such 
situations, one is forced to use multirate sampling. 
Furthermore, in general, one gets better performance 
if one can sample and hold faster. But faster A/D 
and D/A conversions mean higher cost in 
implementation. For signals with different 
bandwidths, better trade-offs between performance 
and implementation cost can be obtained using A/D 
and D/A converters at different rates.  
On the other hand, multirate controllers are in 
general time-varying. Thus multirate control 
systems can achieve what singlerate cannot; e.g. 
gain improvement, simultaneous stabilization and 
decentralized control. Finally, multirate controllers 
are normally more complex than singlerate ones; but 
often they are finite-dimensional and periodic in a 
certain sense and hence can be implemented on 
microprocessors via difference equations with 
finitely many coefficients. Therefore, like singlerate 
controllers, multirate controllers do not violate the 
finite memory constraint in microprocessors. In 
particular, the control strategy presented here is 
essentially a combination of the control strategies 
reported in [9], [10]. The control is constrained to a 
certain piecewise constant signal, while the 

controlled plant output is detected many times over 
a fundamental sampling period. The proposed 
control strategy relies on solving the continuous LQ 
regulation problem.  
TPMRCs provide the ability of the exact 
reconstruction of action of the state feedback 
without resorting to the design of state estimators, 
and without introducing high order exogenous 
dynamics in the control loop. Based on this strategy, 
the original problem is reduced to an associated 
discrete-time LQ regulation problem for the 
performance index with cross product terms, for 
which a fictitious static state feedback controller is 
needed to be computed. Thus, the present technique 
essentially resort to the computation of simple gain 
controllers in a digital environment, rather than to 
the computation of state observers, as compared to 
known techniques. Finally, the designed TPMRCs 
based LQ optimal regulators can possess any 
prescribed degree of stability, since there is the 
possibility to choose the transition matrices of the 
controllers arbitrarily.  
In this paper, the proposed optimal control strategy 
is used to design a desirable excitation controller of 
a hydrogenerator system, for the purpose of 
enhancing its dynamic stability characteristics. The 
particular hydrogenerator studied in the paper, is a 
117 MVA hydrogenerator unit of the Greek Electric 
Utility Power System, which is installed in Sfikia, 
near Veria, Emathia, Greece and which supplies 
power through a step-up transformer and a 
transmission line to an infinite grid. The proposed 
optimal control design is based on linear state space 
models of the hydrogenerator, obtained by 
linearizing its nonlinear Park’s equation [11], [12], 
about a particular operating point. Simulation results 
regarding the application of the proposed technique 
to the linearized stae-space model of the 
hydrogenerator unit clearly show the effectiveness 
of the method and a significant improvement of the 
dynamic performance of the system.  
 
 
2 LQ Regulation using Two-Point 
Multirate Controllers 
Consider the continuous-time, linear, time-invariant, 
multi-input, multi-output (MIMO) system described 
in state-space by the following equations 

)t()t(  ,  )t()t()t( CxyBuAxx =+=
•

 (1) 
where,  is the state,  is the 
input and  is the output of the system and 
where all the matrices have real entries and 

n)t( R∈x m)t( R∈u
p)t( R∈y

Proceedings of the 11th WSEAS International Conference on SYSTEMS, Agios Nikolaos, Crete Island, Greece, July 23-25, 2007         2



appropriate dimensions. It is further assumed, that 
system (1) is controllable (stabilizable) and 
observable (detectable).  
The following definitions will be useful in the 
sequel. 
Definition 1. Let , be the ith row of 
the matrix C. For an observable matrix pair 

p,...,2,1i ,T
i =c

( )CA, , 
a collection of p integers { }p21 n , ,n ,n L , is called 

an observability index vector of the pair , if 
the following relationships simultaneously hold 

( )CA,

( ) ( )[ ] nrank , nn
p

1i
p

1nT
p1

1nT
1i

p1 ==∑
=

−− cAccAc LLL

Definition 2. The generalized reachability 
Grammian of order N on the interval  is 
defined by 

[ 0T,0 ]

( ) ∑
−

=μ
μμ

−=
1N

0

T1
N0N T0,T ΔΔW  (2) 

where 

N
TT 0

N =   ,   (3a) 
NT

1N
N

ˆˆˆ BA −μ−
μ ≡Δ

and where, in (3a), 

( )NN ATexpˆ =A   ,  (3b) ( )∫ ττ=
N

N

T

0
T dexpˆ BAB

Now, define  =rank .  Np ( )0,T0NW
Since , we can always find (perhaps 
not uniquely) an  full rank matrix  such 
that 

( ) 0W ≥0,T0N

Npn× NB

( ) T
NN0N 0,T BBW =  (4) 

It is worth noticing at this point that matrix , can 
be computed as follows:  

NB

a) If  is positive definite, then  can be 
obtained from the Clolesky factorization of 

. That is, if  is an upper triangular full 
rank matrix obtained from the Cholesky 
factorization of  (i.e.  is such that 

) and U

( 0,T0NW )

)

)
)

)

)

NB

( 0,T0NW Ŝ

( 0,T0NW Ŝ

( 0,Tˆˆ
0N

T WSS = S is a unitary matrix (i.e. 

), then IUU SS =T

TT
N

ˆ
SUSB =  (5a) 

b). If  is positive semidefinite, then we 
can proceed as follows: Let a Singular Value 
Decomposition of  be defined as  

( 0,T0NW

( 0,T0NW

( )0,T0NW =  where U , 

V  are unitary matrices and  is 
defined by 

T
*

V
00
0

U ⎥
⎦

⎤
⎢
⎣

⎡Σ nn×∈R

nn×∈R *Σ NN pp ×∈R
{ }

Np21
* ,...,,diag σσσ=Σ , where jσ , 

j=1,2,…,  are the nonzero singular values of Np
( )0,T0NW . Since, by definition,  is a 

symmetric matrix, we have U=V. Let  be an 
upper triangular full rank matrix obtained from the 
Cholesky factorization of  (i.e. ). 

Now, let  be constructed as  

( 0,T0NW )
*Σ

M

*Σ *T
** Σ

ΣΣ
=MM

npN×∈RWM
 ( )[ ]

NN* pnp −×= 0MM W Σ
 

Then,  

   =WWMMT
⎥
⎦

⎤
⎢
⎣

⎡

00
0*Σ

and  
 ( )0,T0NW =   TT UMUM WW

Consequently,  
TT

N VUMB W=  (5b) 
In the sequel, let matrix Φ,  be defined as  
 ( )0Texp A=Φ  

Let, also,  be the  full rank matrix 

defined as the right pseudoiverse of , i.e.  

r
NB Npn×

T
NB

( ) 1
N

T
NN

r
N

−
= BBBB  (6) 

 

 
Figure 1. Control of linear systems using Two –Point Multi 

Rate Controllers.  
 
Consider now applying to system (1) the multirate 
control strategy depicted in Figure 1. In particular, 
we assume that all samplers start simultaneously at 
t=0. The hold circuits  and  are zero order 
holds with holding times  and , respectively. 
The inputs of the plant are constrained to the 
following piecewise constant controls 

0H NH

0T NT

( ) ( ) ( ) Npr
N

T
NN kTkTTTkT R∈Δ=++ −

00
1

0 �  ,  � uuBu μζμ
 (7) 
for 

[ )NN0 T,0for  and 0k ,1N0,1,...,= ,TkTt ∈ζ≥−μμ+= .  
The ith plant output , is detected at every )t(yi

i

0
i M

TT = , such that 

Lu

r
NB 0H H N

  
PLANT 

 

( )$u kT0([ ) ]$u k T+1 0
u(t) y(t) _ 

K 

TN

+ MULTIRATE SAMPLING  

MULTIRATE SAMPLING

( )$γ kT0

Σ  z-1
TN

T−1Δμ
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( ) ( ) 1M0,1,...,=  ,  TkTTkTy ii0
T
ii0i −ρρ+=ρ+ xc  

 (8) 
where, , are the so-called 
output multiplicities of the sampling.  

p,...,2,1i ,Mi =∈ +Z

It is worth noticing that, in general, . That 
is, multirate sampling of the plant inputs and outputs 
may be performed at a different rate.  

NMi ≠

The sampled values of the plant outputs obtained 
over , are stored in the -

dimensional column vector 

( )[ )00 T1k,kT + *M
( )0kTγ̂  of the form  

( ) ( ) ( )[ ]Tpp0p0p1101010 T)1M(kTy)kT(yT)1M(kTy)kT(ykTˆ −+−+=γ LLL

( )])1(0

T

ppp TMkTy −+L  

where  

∑
=

=
p

1i
i

* MM .  

The vector ( 0kTˆ )γ  is used in the discrete dynamic 
control law of the form 
( )[ ] ( ) ( 00u0 kTˆkTˆT1kˆ )γ−=+ KuLu  (9) 

where . 
*

NNN Mppp
u  , ×× ∈∈ RR KL

The multirate control strategy described above will 
be mentioned in the sequel as a Two-Point-Multirate 
Controller (abbreviated here as TPMRC).  
The multirate optimal scheme suggested in this 
paper is based on solving the continuous-time LQ 
regulation problem with the control strategy of 
Figure 1. More precisely, the control objective is to 
find an optimal  constrained by (7) and (9), 
which, given the initial value y(0), minimizes the 
cost function 

)t(u

[ ]∫
∞

+=
0

TT dt)t()t()t()t(
2
1J uuQyy Γ  (10) 

Note that in (10),  are 
symmetric matrices with , while 

mmpp  and ×× ∈∈ RR ΓQ
00Q >≥ Γ ,

( )QCCA T ,  is an observable (detectable) pair. 
To find a solution to the aforementioned LQ optimal 
regulation problem via TPMRCs, observe first that 
since u(t) is a function of , the problem 
considered in this Section, is essentially the problem 
of finding an optimal , , 

which minimizes (10). Moreover, since 

( 0kTû

Observe first that the following relationship hold 
(see [9] for its derivation) 
 
( ) ( ){ } ( ) ( ) ( )0

*
N0NN0 kTˆ,kTTexpTkT uBxAx ζμ+ζ+μ=ζ+μ+  

 (11) 
where 
 

( ) ( ){ } r
N

TT1
N

*
N

ˆexpT, BBVAB μζμ
− +ζ=ζμ Δ  (12) 

In (12), the matrices  are defined as 
follows 

ζμ BV ˆ and 

 
( ) ( )N

T
N

N
N TTˆ

μμ
μ−

μ = ΘΘAV  (13) 

( )∫
ζ

ζ λλ=
0

dexpˆ BAB  

where, in (13), matrix ( NTμ )Θ  is defined as follows 
 

( ) [ ]
NNN T

1
NTNTN

ˆˆˆˆˆT BABAB −μ
μ = LΘ  

 
It is pointed out that  

( ) NN
*
N T,1N BB =−  

Therefore, at the sampling instants , we can 
easily obtain 

0kTt =

( )[ ] ( ) ( 0N00 kTˆkTT1k uBxx )+=+ Φ  (14) 
Note also that, at every 

1M,...,1,0 ,TkTt ii0 −=ρρ+= , we have 

( ) ( ) ( ) ( 0
*
M0ii0 kTˆkTˆTkT

i
uBxAx ρ+=ρ+ ρ )  (15) 

where 
( )ii Texpˆ AA =  

( ) ( ) r
NM

1
N

*
M ii

T BB ρ=ρ − Ε  (16) 

In (16), matrix ( )ρ
iMΕ  is defined as follows 

 

( ) ∑ ∫
−

=

+

+Δ
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=Ε

1),(

0

)1(

exp
ρ

ξξρρ
ia

j

Tj

jT

T
jN

i
M

N

N

i
dT

M
N BA

∫ Δ
⎭
⎬
⎫

⎩
⎨
⎧

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

N
i

N

T
M
N

Tia

T
iaN

i

dT
M
N

ρ

ρ
ρξξρ

),(
),(exp BA  (17) 

)

( ) Np
0opt kTˆ R∈u 0k ≥

( )0kTû  
obeys (9), the LQ optimal regulation problem 
considered here, can be reduced to the determination 
of the optimal gains  and K which minimize 
(10). These optimal gains can be determined using 
the following procedure: 

uL

where  

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
ρ=ρ

i
S M

NINT),i(a  

and where ( )νSINT  is the greatest integer that is 

less than or equal to . +∈ν R
Now, define the following matrices 
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( ) ( ) ( ) ( )∑∫
−

=μ

μμ≡ξξξ=
1N

0
NN

T

N

T

0

TT
N

ˆTˆdexpexp~ 0

AAAQCCAQ Ξ  

 (18) 

( ) ( ) ( )[ ] r
N

1N

0

T
N

T
N

T

N
1

NN TTˆT~ BVAG
⎭
⎬
⎫

⎩
⎨
⎧

+= ∑
−

=μ
μμ

μ− ΔΛΞ  

 (19) 

( ) [ ] ( ) ( )
( ) ( )

r
N

N

T

T

NNN
T

NNTr
NNN TTT

TT
T B

V
N

VB
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

Δ⎥⎦

⎤
⎢
⎣

⎡
Γ+Λ

ΛΞ
Δ=Γ ∑

−

=

−
1

0

2~
μ μ

μ
μμ  (20) 

where 

( ) ( ) ( )∫ ξξξ=
NT

0

TT
N dexpexpT AQCCAΞ  (21) 

( ) ( )∫ ξξ= ξ

NT

0

TT
N  dˆexpT BQCCAΛ  (22) 

( )   dˆˆT
NT

0

TT
N ∫ ξ= ξξ BQCCBN  (23) 

It is pointed out that matrices ,  and 

 (and consequently matrices 

( )NTΞ ( NTΛ )
)( NTN N

~Q , N
~G  and 

), can be easily computed on the basis of the 
algorithm reported in [13].  

N
~Γ

Now, substituting (1), (7) and (11) in (10) and 
taking into account (18)-(23), we finally obtain  

( ) ( )[ ] ( )
( )⎥⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
= ∑

∞

= 0

0

0k N
T
N

NN
0

T
0

T

kTˆ
kT

~~
~~

kTˆkT
2
1J

u
x

G
GQux
Γ

 

 (24) 
>From the previous analysis, it becomes clear that, 
the original optimal LQ regulation problem has been 
reduced to an associated LQ optimal regulation 
problem for the performance index with cross-
product terms (abbreviated here as LQRCPT), 
namely, the problem of finding a TPMRC of the 
form (7), (9), which minimizes the performance 
index (24) subject to the dynamic constraints 
defined by equation (14).  
In the sequel, the nature of the control law (9) will 
be explained. To this end, we establish the following 
fundamental Theorems.  
 
Theorem 1. The following basic formula of the 
multirate sampling mechanism holds 
 

( )[ ] ( ) ( ) 0k  ,  kTˆkTˆT1k 000 ≥−γ=+ uDHx  (25) 
where, matrices 

 
are defined as follows  
( ) ( )[ ] ( )0,i0

M
ii0 kTˆˆT1kˆTkT i uBxAx ρ
−ρ ++=ρ+

( )

( )

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

−

−

−

−

−

−

1M,p
T
p

0,p
T
p

1M,1
T
1

0,1
T
1

1
p

T
p

1M
p

T
p

1
1

T
1

1M
1

T
1

p

1

p

1

ˆ

ˆ

ˆ

ˆ

  ,  

ˆ

ˆ

ˆ

ˆ

Bc

Bc

Bc

Bc

D

Ac

Ac

Ac

Ac

H

M

M

M

M

M

M

 (26) 

and where, in (26),  
( ) ( )[ ] ( )0,i

T
i0

M
i

T
ii0i kTˆˆT1kˆTkTy i uBcxAc ρ

−ρ ++=ρ+  
 (27) 
Proof: Solving (14) for  and substituting its 
solution in (15), we obtain  

( 0kTx )

( ) ( )[ ] ( )0,i0
M

ii0 kTˆˆT1kˆTkT i uBxAx ρ
−ρ ++=ρ+  

 (28) 
where, in producing (28), use was made of the fact 
that . Introducing (28) in (8), yields  iM

iÂ≡Φ

( ) ( )[ ] ( )0,i
T
i0

M
i

T
ii0i kTˆˆT1kˆTkTy i uBcxAc ρ

−ρ ++=ρ+  
 (29) 
for 1M,...,1,0 i −=ρ . Moving the terms containing 
( )[ ]0T1k +x  to the left hand side, moving the terms 

of ( )i0i TkTy ρ+  to the right and expressing the 
equations for 1M,...,1,0 i −=ρ  by a vector matrix 
form, we finally obtain (25). 

Theorem 2 [14]. Let , be positive 
integers which comprise an observability index 
vector of the observable pair ( . If 

 are chosen such that , 
then the matrix H has full column rank. 

p,..,2,1i ,n i =

)CA  ,
p1,2,...,=i ,Mi ii nM ≥

 
Theorem 3. Let ( )CA  ,  be an observable pair and 
suppose that . Then, for 
almost every sampling period , we can make the 
control law (9) equivalent to any static state 
feedback control law of the form 

p,...,2,1i ,nM ii =≥

0T

( ) ( ) 1kfor  , kTkTˆ 00 ≥−= Fxu  (30) 
by choosing suitably the controller pair , 
such that 

( )u , LK

KDLFKH == u  ,   (31) 
 
Proof: Pre-multiplying (25) by K, we obtain 

( )[ ] ( ) ( ) 0k  ,  kTˆkTˆT1k 000 ≥−γ=+ uKDKKHx  
Therefore, the control law (9) becomes equivalent to 
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the state feedback law (30), if, for the matrix K, the 
first of equations (31) holds, and if we evaluate  
by the second of (31). Since by Theorem 2, the 
matrix H has full column rank if we select 

, then for almost every , 
there exists a matrix K, fulfilling (31).  � 

uL

p,...,2,1i ,nN ii =≥ 0T

 
Theorem 4. Let  be an observable pair and 
suppose that for some  such 
that , the matrix [  has full 
column rank. Then, for almost every sampling 
period , there exists a matrix K such that 

( CA  , )

]

]

]

)

p,...,2,1i ,nM *
ii ==

N
* pnM +≥ DH 

0T
[ ] [ u  LFDHK =  (32) 

where F is an arbitrarily specified matrix 
corresponding to any desired state feedback and  
is an arbitrarily specified matrix corresponding to 
the desired state transition matrix of the controller 
(9) itself.  

uL

 
Proof: From (31) and for  having a prespecified 

value we obtain (32). If for some  
i=1,2,…,p, such that , the matrix 

 has full column rank, then (32) is solvable 
with respect to K, for almost every sampling period 

.  

uL
,nM *

ii =

N
* pnM +≥

[ DH 

0T
 
Remark 1. In Theorems 3 and 4, the term “for 
almost every sampling period ” is used to shortly 
express the fact that the assertion fails only at 
isolated values of .  

0T

0T
>From the previous analysis, it becomes clear that, 
we can equivalently realize any desired static state 
feedback matrix F by a dynamic controller of the 
form (9), possessing any prescribed degree of 
stability, since we can choose the matrix  (which 
corresponds to the transition matrix of the controller 
itself) arbitrarily. The choice  is of course 
permissible, leading to static TPMRCs of the form 

uL

0L =u

( )[ ] ( 00 kTˆT1kˆ γ−=+ Ku  (33) 
It becomes also clear that, in order to find a control 
law of the form (9) which minimizes the 
performance index (24), one has essentially to refer 
to an easier problem, i.e. to the design of a fictitious 
static state feedback law of the form (30), which has 
an equivalent action. The calculation of the matrix 
pair  is then performed by using either (31) 
or (32), after choosing a desired (usually stable) 

matrix .  

( u , LK )

uL
A state feedback law of the form (30) that 
minimizes the index (24) is well known to be [15] 

( ) ( )ΦΓ PBGPBBF T
NN

1
N

T
NN

~~ ++=
−

 (34) 
 
where P is the symmetric positive definite solution 
of the following discrete algebraic Riccati equation 

−+ΦΦ= N
T QPP ~

 

( )( ) ( )Φ++ΓΦ+
−

PBGPBBPBG T
N

T
NN

T
NNN

T
N

~~~ 1
 

 (35) 
Note that the solvability of (35) and the asymptotic 
stability of the corresponding closed-loop system are 
assured by the following Lemmas, whose proofs can 
be found in [9].  
 
Lemma 1. Matrix N

~Γ  is positive definite if 

 .or  T 0QCC0 >>Γ
 
Lemma 2. Define  
 T

N
1

NNNN
~~~~ˆ GGQQ −−= Γ   

Then, matrix  is positive semidefinite.  NQ̂
 
Lemma 3. There exists a unique positive definite 
solution P of (35) and the corresponding closed-loop 
system with closed-loop system matrix  

KHBFB NNcl −≡−= ΦΦΦ  (36) 
is asymptotically stable if (and only if) ( )BA  ,  is 
controllable (stabilizable) and ( )QCCA T ,  is 
observable (detectable). 
If a fictitious state feedback matrix F has been 
determined on the basis of (34), the TPMRC matrix 
pair ( )u , LK , in the case where  is not 
prespecified, can be obtained as follows: 

uL

 
Case I ( )ii nM = : In this case, matrix H is 
nonsingular. Therefore, 

( ) ( )   ,  ~~ 11 −−
Φ++Γ= HPBGPBBK T

NNN
T
NN  

( ) ( ) DHPBGPBBL 11 ~~ −−
Φ++Γ= T

NNN
T
NNu  (37) 

 
( )ii nM > : In this case, Case II 

( ) ( ) lHPBGPBBK ΦΓ T
NN

1
N

T
NN

~~ ++=
−

 (38a) 

( ) ( ) DHPBGPBBL lΦ++Γ=
− T

NNN
T
NNu

~~ 1
 (38b) 

where  is the left pseudoinverse of matrix H (i.e. 
the matrix fulfilling .  

lH
)IHH =l
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Similarly, in the case where  is desired to have a 
prespecified value, one can easily obtain 

uL

( ) ( )[ ] lHLPBGPBBK ˆ~~
u

T
NN

1
N

T
NN ΦΓ ++=

−
 (39) 

where 
. [ ]DHH  matrix  of sepseudoiverleft   theis ˆ l

 
 
3 Hydrogenerator system model and 
simulation results 
In the present work, the aforementioned optimal 
control strategy is used to design a desirable 
excitation controller of a hydrogenerator system, for 
the purpose of enhancing its dynamic stability 
characteristics. The hydrogenerator system studied, 
is an 117 MVA hydrogenerator unit of the Greek 
Electric Utility Power System, which is installed in 
Sfikia, Himathia, Greece and which supplies power 
through a step-up transformer and a transmission 
line to an infinite grid. A linear model of the 
hydrogenerator can be obtained by linearizing its 
nonlinear Park’s equations [11], [12] about various 
operating points. By mathematically eliminating the 
damper circuit currents  and  and the field 

current  from the standard Park’s equations one 
obtains, after some algebraic manipulations, the 
following modified practical form of these equations 
in state variable form 

Di Qi

fi

 

 0dt
d

ω−ω=
δ

 (40) 

 

⎪⎩

⎪
⎨
⎧

⎢
⎣

⎡
Ψ

−
−

−
ω

=
ω

f
fD

2
ad

Dadad
m

0

xxx
)xx(x

T
H2dt

d

qD
fD

2
ad

fadad i
xxx

)xx(x
⎥
⎦

⎤
Ψ

−
−

+ dQ
Q

aq i
x
x

Ψ+  

 

⎪⎭

⎪
⎬
⎫

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−−

−
−−

−+ qd
Q

2
aq

q
fD

2
ad

f
2
adD

2
ad

3
ad

d ii
x
x

x
xxx

xxxxx2
x

  (41) 
 

D
fD

2
ad

adf0
f

fD
2
ad

Df0f

xxx
xR

xxx
xR

dt
d

Ψ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

ω
−Ψ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−

ω
=

Ψ

( )
d

fD
2
ad

Dadadf0
fd

ad

f0 i
xxx

xxxR
E

x
R

⎥
⎦

⎤
⎢
⎣

⎡

−
−ω

−
ω

+  (42) 

 

D2
adDf

fD0
f2

adDf

adD0D

xxx
xR

xxx
xR

dt
d

Ψ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

ω
−Ψ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−

ω
=

Ψ

( )
d2

adDf

fadD0 i
xxx

xxR
⎥
⎦

⎤
⎢
⎣

⎡

−

−ω
+  (43) 

 

q
Q

aqQ0
Q

Q

Q0Q i
x

xR
x
R

dt
d ω

−Ψ
ω

−=
Ψ

 (44) 

 

×
τ

−
τ

−
τ

=
te

e
fd

e
ref

E

Efd

v
K

E1V
K
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dE
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  (45) 
 
where, δ  is the torque angle, ω  and  are the 
machine and synchronous speed, respectively, H is 
an inertia constant,  is the generator-shaft 
mechanical torque,  and  are the 

magnetizing reactances in d- and q-axis,  and x

0ω

mT

adx aqx

Dx Q 
are the damper circuit self-reactances in d- and q-
axis,  is the field winding self-reactance, fx fΨ  is 
the field flux linkage, DΨ  and  are the damper 

circuit flux linkages in d- and q-axis,  and  are 

the stator currents in d- and q-axis circuits,  and 
 are the machine synchronous reactances in d- 

and q-axis,  is the field resistance,  is the 
exciter output voltage,  and  are the damper 

circuit resistances in d- and q-axis,  is the exciter 
time constant,  is the exciter gain,  is the 
machine terminal voltage,  is the phase stator 
resistance,  and  are the stator voltages in d- 

and q-axis and  is the voltage reference.  

QΨ

di qi

dx

qx

fR fdE

DR QR

eτ

eK tv

aR

dv qv

refV
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MVA = 117 DR  = 0.014 

kV = 15.75 QR  = 0.008 

RPM = 125 aR  = 0.002 

dx  = 0.935 H  = 3 

qx  = 0.574 eK  = 50 

adx  = 0.827 eτ  = 0.05 

aqx  = 0.475 0ω =314.1593 

fx  = 0.221 qi  = 0.6652 

Dx  = 0.992 di  = 0.7467 

Qx  = 0.551 qv  = 0.9242 

fR  = 0.0006 dv  = 0.3819 

Table 1. Principal hydrogenerator system data.  
 
The principal data of the three phase hydrogenerator 
system under control is given in Table 1. Note that, 
in Table 1, all unspecified data is in p.u. on machine 
ratings, the time constants and the inertia constant of 
the generator and the prime-mover are in secs, while 
the synchronous speed is in rad/sec. Note also that 
the linkage reactances in d- and q-axis are given by 

=0.095 p.u. and =0.076 p.u.. The resistance 
and the reactance of the external system, consisting 
of the step-up transformer and the double-circuit 
transmission line are given by  and 

. 

ldx lqx

p.u. 015.0R e =
p.u. 40.0X e =

 
 vt  

p.u. 
Pt  

p.u. 
Qt  

p.u. 
δnom 
rad 

ωnom 
rad/sec 

O.P. I 1.0 0.9 0.436 0.8024 100π 
O.P. II 1.0 1.1 0.5 0.9604 100π 
O.P. III 1.0 0.5 0.58 0.4592 100π 
O.P. IV 1.0 0.4 -0.68 0.4914 100π 

 
 Ψf,nom 

p.u. 
ΨD,nom 

p.u. 
ΨQ,nom 

p.u. 
Εfd,nom 

p.u. 
O.P. I 1.44005 1.0062 -0.3160 1.6123 
O.P. II 1.4737 1.0001 -0.3645 1.7720 
O.P. III 1.4802 1.0508 -0.1740 1.6069 
O.P. IV 1.0107 0.8842 -0.2911 0.4734 

Table 2. Some operating points of the hydrogenerator system  
 
Defining the following vectors 

[ ]TfdQDf EΔΔΨΔΨΔΨωΔδΔ=x  

refVΔ=u   ,  [ ]TωΔδΔ=y  
 

after linearization of the nonlinear equations (40)-
(45), with respect to a nominal operating point of the 
system, we obtain a linear state space model for the 

hy-drogenerator. Note that,  defines incremental 
changes of the variables, involved in the description, 
around the particular operating point chosen for the 
linearization procedure. Some of the operating 
points of the hydrogenerator unit are given in Table 
2, wherein  and  denote the active and the 
reactive generator power.  

Δ

tP tQ

In this study we consider linearization about 
operating point II. After linearization we obtain a 
linear state-space model of the hydrogenerator, of 
the form (1), with 
 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−−
−−−−

−−
−−

−−−−

=

20883.264789.409154.1760886.125
0867.7074.0032.00051.2
013.056.19494.110586.3
228.0003.0493.0641.00066.0
0242.41354.46926.190654.72
000010

A

 
[ ]T100000000=B ,   

 

⎥
⎦

⎤
⎢
⎣

⎡
=

000010
000001

C  

 
As it can be easily checked the above linear state 
space model is unstable, since matrix A has two 
unstable complex eigenvalues at 

7898.7j0931.02,1 ±=λ . Note also that the states 

fΨ , DΨ  and QΨ  are not measurable quantities. 
Therefore, the traditional LQ optimal control 
strategies of [1]-[8] are not applicable in the present 
case.  
In the sequel, a simulation study of the proposed 
multirate LQ optimal regulation technique on the 
basis of the above model is performed. The control 
objective is to minimize the performance index (10) 
with { }0.001 , 01.0diag=Q  and Γ = 1, using a 
TPMRC of the form (7), (9). To this end, we 
discretize the open loop system with sampling 
period =1 sec. As it can be easily checked, a set 
of observability indices of the pair (A,C) is given by 

0T

5) ,1()n,n( 21 = . Then, we can choose the output 
multiplicities of the sampling as 2M1 =  and 

6M 2 = . The input multiplicity of the sampling is 
selected as =6. Application of the proposed 
technique yields  

0N
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×= −410K

⎥
⎥
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⎥
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⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−−−
−−−−−
−−−−−

−−−−−−−−
−−−−−−

−−−−−−

511102017
2531143036
16117340210
561911517151442

136925312911636
5915634243847112

 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−−−
−−−
−−−
−−−

−−−−
−−−

×= −

17115129259121104
76334147212339
44116208211255172
935783521148999294
423887284727884362104

139160523534742560282

104
uL  

The closed-loop system has  eigenvalues at 
the origin and the eigenvalues of , 
which have the following values  

6N 0 =
KHB

0N−Φ

6693.0j0438.02,1 ±−=λ  , 

  ,  

 

0005.0  ,  0 4,3 =λ=λ

3882.0 , 0011.0 65 =λ=λ
and obviously lie inside the unit circle. Moreover, 
matrix  has the eigenvalues 

,  and 

. That is strong stabilization is achieved. 

Finally, the optimal average cost is . 
Note that, the optimal average cost in the case where 
a continuous-time static state feedback LQ optimal 
regulator is to be designed has the value 

.  

uL
2636.0j0295.02,1 ±=λ 0001.03 =λ

06,5,4 =λ

8365.60Jopt =

7225.29Ĵ =
 

5 10 15 20 25 30 35 40 45
29.72
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Ĵ

 
Figure 2.  Jopt and J versus Nˆ 0 for T0 = 0.2 .  
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Figure 3.  Jopt versus T0 .  

 
Alternatively, with a sampling period 2.0T0 =  sec 
and the same values for the other design parameters, 
we obtain  

410−=K

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
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⎢
⎢
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⎢

⎣

⎡

−−−
−−−

−−−−
−−−−

−−−
−−−

×

143121016499
33829243892222
794583065174544
9148615751745899114111

832178719816771244253126118
23614189153374825565005440

 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡
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−−

−−−
−−

×= −

11522235
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6440123810231116382

10 4
uL

 
The eigenvalues of the closed-loop system are 

6N 0 =  eigenvalues at the origin and  
7998.0j0002.02,1 ±−=λ  , 

λ 3 4 0 0678 01877, . .= ± j 2797.0 , 0060.0 65 =λ=λ  
which lie inside the unit circle. In this case, matrix 

 has the eigenvalues uL 0249.0j0617.02,1 ±=λ  

and 06,5,4,3 =λ  and strong stabilization is once 
again achieved. Finally, the optimal average cost is 

8050.29J opt = .  
In Figure 2, the variation of the optimal average cost 
with respect to , is depicted for the case where 0N

2.0T0 = . Finally, in Figure 3, the variation of the 
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optimal average cost with respect to  is given.  0T
>From the previous simulations, one can readily 
conclude that the proposed multirate method can be 
easily implemented in digital environment and that 
it is more effective in reconstructing the action of 
the sate feedback than estimator based techniques. 
The proposed technique provides a optimal average 
cost close to that provided by the continuous-time 
state feedback LQ regulator, particularly in cases 
where the input multiplicity of the sampling is large 
or the sampling period is fast enough. Finally, the 
proposed technique provides a smaller optimal 
average cost as compared to the singlerate control 
case (i.e. the case where N0=1). 

 
 
4   Conclusion 
An optimal control strategy based on Two-Point-
Multirate Controllers has been used in this paper in 
order to design a desirable excitation controller of a 
unstable hydrogenerator system, for the purpose of 
enhancing its dynamic stability characteristics. The 
proposed method offers acceptable closed loop 
response as well as more design flexibility 
(particularly in cases where the system states are not 
measurable), and its performance is at least 
comparable to known LQ optimal regulation 
methods. 
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