
On the Influence of Parameters in Particle Swarm Optimisation
Algorithm for Job Shop Scheduling

 ANIL, B. and SIVAKUMAR, S.

Department of Mechanical Engineering,
College of Engineering, Trivandrum

INDIA
anilb@cet.ac.in

Abstract: - Particle Swarm Optimization (PSO) is one of the latest nature inspired meta-heuristic algorithms based on
the metaphor of social interaction and communication such as bird flocking and fish schooling. PSO is a population
based algorithm for finding optimal regions of complex search spaces through interaction of individuals in the
population. In PSO, a set of randomly generated solutions (initial swarm) navigate in the design space towards the
optimal solution over a number of iterations (moves) based on large amount of information about the design space that
is assimilated and shared by the members of the swarm. The solution of PSO depend on the parameter setting such as
swarm size, number of generations, inertia factor, self confidence factor and swarm confidence factor. This work
describes the study on the influence of parameter settings in PSO algorithm in solving the Static Job Shop Scheduling
Problem, which is a NP-hard combinatorial problem. Performance of the algorithm is tested on benchmark problems.
The influence of each PSO parameter on the performance of algorithm is studied in detail.

Key-Words:- Combinatorial optimization, nature inspired meta-heuristic, PSO, Scheduling, Job shop, parameter tuning

1 Introduction

Particle Swarm Optimization (PSO) algorithm developed
by Eberhart and Kennedy [1], is applied extensively for
finding optimal solutions in a large number of problems.
PSO, inspired by the behavior of fish schooling and bird
flocking, employs a set of solutions (swarm) to search
the solution space. Each member solution is called a
particle, and it moves around in the multi-dimensional
search space with a velocity constantly updated by the
particle’s inertia, the experience of the particle, and the
experience of the whole swarm. PSO was first
introduced to optimize various continuous nonlinear
functions. The advantages of PSO algorithm such as
simple structure, ease of implementation, speed to get
the solutions, and robustness made it very popular in a
short period of time. Fatih Tasgetiren et. al [2] proposed
the Smallest Position Value (SPV) rule, to convert
continuous position values to discrete operation
sequence enabling to extend the scope of PSO to
combinatorial problems. The PSO applied to
permutation flowshop can be seen in [10] and an
application of SPV rule based PSO algorithm in multi-
objective flow shop scheduling is found in [8].

Job Shop Scheduling (JSS) problems have been studied
for a long time and is perhaps the most general and
complex of all types of shop scheduling problems. Since
it is a constrained optimization problem, the possibility
of getting a large number of feasible solutions is less as

compared to flow shop scheduling problem[7]. It is
difficult to reach the optimal solution in a short time,
since the problems have a very wide solution space and
there is no guarantee to reach a better state after a
feasible state. Small size instances of the JSS problem
can be solved within reasonable computational time by
exact algorithms such as branch-and-bound and the time
orientation approach. However, when the problem size
increases, the computational time of exact methods
grows exponentially. On the other hand heuristic
algorithms require generally acceptable time and
memory requirements, but do not guarantee optimality
of the final solution. The most recent research on JSS
problems has been focused on heuristic algorithms. The
solution techniques of heuristic algorithms can be
broadly classified into two groups: meta-heuristics and
local search type heuristics[4]. In the first category,
Simulated Annealing (SA), Genetic Algorithm
(GA),Tabu Search (TS), Ant Colony Optimization
(ACO), Hybrid SA and GA[5], Neural Network (NN),
have provided abundant research. The latter group
consists of shifting bottleneck procedure, Priority
Dispatching rules, Randomized dispatching rules,
Guided local search, constraint propagation and parallel
Greedy Randomized Adaptive Search Procedure
(GRASP). In this work, the JSS problem is solved by
PSO algorithm and a detailed study on the influence of
various PSO parameters on the performance of the
algorithm in the Job shop context is conducted.

Proceedings of the 11th WSEAS International Conference on SYSTEMS, Agios Nikolaos, Crete Island, Greece, July 23-25, 2007 373

2 Problem Description

The JSS problem with the objective function of
minimizing makespan can be stated as follows;

There are n jobs and each of the jobs is to be processed
without preemption by m machines. Each job consists of
m operations that own a predetermined processing order
through machines. Each machine can handle no more
than one job at a time and each job must visit each
machine only once. The release time of all jobs is zero.
Set-up and knock-down times on each machine are
included in the processing time. An example of 3x3
JSSP is given in the Table 1. The data includes the
routing of each job and the processing time for each
operation (in parentheses) [9].

Table 1. A 3x3 JSS problem

The overall objective is to minimize the completion time
of whole schedule(overall completion time of all jobs).

The objective function is, Minimize maxC
where (1) njjCC ..,2,1max }{max ==

jC is the completion time of jth job, and n is the total
number of jobs.

3 PSO Algorithm in Job Shop Problem

3.1 Solution Representation
In order to construct a direct relationship between the
problem domain (JSS problem) and the PSO particles, n
x m number of dimensions for as much number of
operations is used. The particle Xti = [xti1, xti2,...,xtnm]
corresponds to the continuous position values for n x m
operations of a particular solution i for tth iteration. The
particle itself does not present a sequence of operation or
solution. Instead, the Shortest Position Value (SPV)
rule[2] is used to determine the permutation implied by
the position values xij

t of particle Xit. According to the
SPV rule, the operation corresponding to the smallest
position value is assigned to be the first operation in the
permutation πi

t; the operation corresponding to the next
higher position value is assigned to be the second
operation, and so on (operations are sorted according to
the position values xij

t to construct the operation
sequence πi

t). Representation of a particle(Xi) for a 3x3
JSS problem, with position values and corresponding
operation sequence(πi) generated using SPV rule are

shown in Table 2. For a 3 job, 3 machine problem, there
will be 9 operations to be scheduled. The second row
represents the randomly generated position values for 9
operations. Third row sorts the position values in
ascending order based on SPV rule. Fourth row (πi)
represents a single solution in the form of operation
sequence.

 Table 2. Solution representation using SPV rule

3.2 Initial Population Generation
Normally in PSO algorithm, the initial population of
particles are generated randomly. In the JSS problem,
the probability of getting feasible solutions in the
random generation of initial population is very low. In
this work, one feasible schedule is generated by applying
a priority dispatching rule (Shortest Processing Time
rule - SPT) and used as the first particle in the initial
population. The remaining (Ps-1) particles are generated
randomly, where Ps is the total number of particles in
the population or swarm.
The following equation is used to construct the initial
continuous position values of the particle:

 X
0
ij = xmin + (xmax − xmin)* r1 (2)

where xmin = −4, xmax= 4.0, and r1 is a uniform random
number between 0 and 1.

Initial velocities are generated for each particle by a
similar formula as follows:

v
0

ij = vmin + (vmax − vmin)* r2 (3)

where vmin = −4.0, vmax = 4.0, and r2 is a uniform
random number between 0 and 1.

3.3 The computational procedure
Step 1: Initialization

Set iteration count, t = 0, Ps = the number of particles in
the swarm. Generate Ps particles with position vectors
X and Velocity V randomly,

 {Xi
0
, i =1,2,...,Ps}, where Xi

0
 =[x

0
i1, x

0
i2,.., x

0
i(nxm)]

 {Vi
0
,i =1,2,...,Ps}, where Vi =[v

0
i1,v

0
i2,...,v

0
i(nxm)]

Job Operations routing (Processing time)
1 1(3) 2(3) 3(3)
2 1(2) 3(3) 2(4)
3 2(3) 1(2) 3(1)

Dimensions
 n x m
(No.of operation)

1

2

3

4

5

6

7

8

9

Position
values (Xi) 2.

1

3.
5

0.
5

1.
2

-3
.6

0.
8

2.
6

-0
.3

-1
.5

Applying
SPV rule -3

.6

-1
.5

-0
.3

0.
5

0.
8

1.
2

2.
1

2.
6

3.
5

Operation
 order (πi) 5 9 8 3 6 4 1 7 2

Proceedings of the 11th WSEAS International Conference on SYSTEMS, Agios Nikolaos, Crete Island, Greece, July 23-25, 2007 374

Apply the SPV rule to find the operation sequence
except for the first particle.

 π
0
i = [π

0
i1,π

0
i2,..,π

0
i(nxm)] of particle X

0
i for i =2,3,...,Ps.

Check the feasibility of each particle(operating
sequence) by comparing it with the constraint.

Find the fitness value (f – makespan) of each feasible
particle in the swarm. Infeasible particles will be
assigned with a makespan of very high value until they
get a feasible solution in subsequent iterations.

For each particle i in the swarm, set the personal best
position values to the present position values (P

0
i = X

0
i)

and assign the fitness as the best fitness value, fi
pb

for
i =1,2,..., Ps.

When an infeasible solution gets a feasible solution in a
subsequent iteration, the position values in that iteration
will be set as personal best of that particle.

Find the Global best, which is the best fitness value
among the whole swarm such that,

fl = min{ f
0

i } for i =1,2,...,Ps with its corresponding

positions X0
l .

Set global best to G =X
0

l such that

G
0
=[g1=xl,1,g2= xl,2 ,...,gnxm=xl nxm]with its fitness value

f
gb

= fl

Step 2: Update iteration counter (t =t+1). Update Inertia

weight factor (w),

 wt= a+{b x (Mg-h)/(Mg-1)} (4)

Where Mg is the maximum number of generations, h is
the current iteration number.
(Inertia weight is gradually reduced from a+b to a
linearly as iteration proceeds)

Step 3: Update velocities and positions

 vt
ij ={wt vt-1

ij +C1 r1 (p
t-1

ij −xt-1
ij)+C2 r2 (g

t-1
j −xij

t-1
)} (5)

Where C1 and C2 are Self confidence and Swarm
confidence factors, r1 and r2 are uniform random
numbers between (0, 1).

 xij
t = xij

t−1 + vij
t (6)

Step 4: Apply the SPV rule to find the new permutations
and calculate fitness.

Step 5: Update personal best and global best
If fi

t < fi
pb for i=1,2,.,Ps, then personal best is updated as

Pi
t = Xi

t and fi
pb= fi

t

fl
t
 = min{ fi

pb
 }, i =1,2,..., Ps; l Є {i; i =1,2,..., Ps}.

If fl
t < f gb, then the global best is updated as Gt= X l

t and

f gb= fl
t

Step 6: Termination criterion
If the iteration count exceeds the maximum number
of iterations, then stop; otherwise go to step 2.

4 Parameter Study
The performance of the PSO algorithm depends heavily
on the parameter values used and tuning of the
parameters is essential for the fast convergence of the
solution [6]. The major parameters in the PSO algorithm
are the swarm size, number of generations, inertia
factor, self confidence factor and swarm confidence
factor. The details of the parameters used in this study
are given in Table 3.

Table 3. Different parameters of PSO and its role
PSO Parameter Role of parameter
Swarm size (Ps) Number of particles in the

population
Number of Generations
(Mg)

Termination criteria

Inertia factor (w) To control the effect of
previous velocity on current
velocity

Self confidence factor
(C1)

To control the effect of
Personal best on solution

Swarm confidence factor
(C2)

To control the effect of Global
best on solution

The algorithm is applied on the benchmark problems of
Fischer Thompson[3] of size 6x6 (FT-06), and Lawrence
problems of sizes 10x5 (LA-01), 15x5 (LA-06), 20x5
(LA-11, LA-10), 15x10 (LA-21), 20x10 (LA-26) and
30x10 (LA-31).

4.1 Effect of Swarm size (Ps)
A 10 job x 5 machine problem(LA-01), was considered
for the study. The swarm size was varied between 50 to
700. The variation in makespan with generations at
different swarm size is shown in Figure 1. The table 4
shows the converged makespan value for different
swarm sizes. For a swarm size of 500 particles, the
value of makespan is 704. There was no further
improvement in the value at higher swarm sizes. The
study on different problem sets reveal that a swarm size
of 500 gives the best performance at reasonable
computation time.

Proceedings of the 11th WSEAS International Conference on SYSTEMS, Agios Nikolaos, Crete Island, Greece, July 23-25, 2007 375

650

850

1050

1250

1450

1650

1850

0 200 400 600 800 1000
Generations

M
ak

es
pa

n

Ps=50 Ps=75 Ps=100 Ps=200 Ps=300 Ps=400 Ps=500

Fig 1. Convergence behavior with different swarm size

Table 4 Converged Makespan at different swarm sizes

 Swarm-size (Ps) Makespan
50 984
75 886
100 803
200 794
300 736
400 712
500 704
600 704
700 704

4.2 Effect of Number of Generations (Mg)
In order to fix a termination criteria, a study has been
carried out to find the effect of Number of generations
required on different sized problems. The swarm size has
been fixed at 500. Table 5 summarises the results on
different problem sizes. As the problem size increases,
the number of generations required for convergence also
increases. Therefore, the number of generations
(termination criteria) has to be varied with the problem
size. This also points to one of the inherent limitations of
PSO.

 Table 5 Convergence behavior with problem size

4.3 Effect of Inertia factor (w)

Inertia factor is used in the algorithm to control the effect
of previous velocity of a particle on its current velocity.
It is given a high value during the start of the search
process and gradually decreased linearly with time to the
lower limit. The algorithm is tested on a 6 job x 6
machine problem with different settings of inertia
weight. The variation of makespan for a particular inertia
factor over the generations is shown in Fig 2.

0 100 200 300 400 500 600 700 800 900 1000
60

70

80

90

100

110

120

130

140

X: 373
Y: 67

Generations

M
ak

es
pa

n

Fig 2 Variation of makespan with w =1.0 e-5 to 1.0 e-6

(for a 6 x 6 problem)

Table 6 summarises the convergence of the algorithm at
different settings of inertia factor. The converged
makespan value is shown in column 3. It has been
observed that with a higher value of w (w=0.1 to 0.01),
convergence rate is affected. Since the effect of previous
velocity on current velocity is more in this case, it has
higher tendency to keep the solution in the neighborhood
of the original solution preventing it from seeking a
global optimum. On the other hand a lower value of
inertia factor (w =1e-5 to 1e-6) results in a better solution
within 200 generations. As can be seen from the table,
an optimum value of makespan of 60 is obtained with an
inertia factor setting of 1.0 e-6 to 1.0 e-7. There was no
further improvement in solution at w values lower than
this setting. It is evident that for encouraging exploration
and for getting more feasible solutions a very low value
of inertia factor shall be used.

Table 6. Convergence behavior with different inertia
factors

Inertia factor
 (w)

Nature of Convergence Makespan

0.1 to 0.01 Not converging 130
1.0 e-2 to 1.0 e-3 Not converging 130
1.0 e-3 to 1.0 e-4 Converging to a lower value 83
1.0 e-4 to 1.0 e-5 Converging to a lower value 73
1.0 e-5 to 1.0 e-6 Converging to a lower value 67
1.0 e-6 to 1.0 e-7 Converging to a lower

value close to optimum
60

Problem

code
Problem

size

No. of
operations

in a schedule

Generation at
which

converges
FT-06 6 x 6 36 170
LA-01 10 x 5 50 538
LA-06 15 x 5 75 712
LA-11 20 x 5 100 1121
LA-21 15 x 10 150 1322
LA-26 20 x 10 200 1685
LA-31 30 x 10 300 1936

Proceedings of the 11th WSEAS International Conference on SYSTEMS, Agios Nikolaos, Crete Island, Greece, July 23-25, 2007 376

4.3 Effect of Self Confidence factor (C1)
The importance to be given to the previous best position
of each particle is determined by this factor. It is noted
that this factor represents cognition, or the private
thinking of the particle when comparing its current
position to its own best. The effect of C1 on algorithm
is studied on a 15x5 problem (LA-10). C1 value is
varied from 2 to 1.0 e-8. Fig 3 shows the convergence
with C1 = 1e-3. Table 7 summarises the nature of
convergence. With high values of C1, no additional
feasible solutions are generated after the first generation
(The value 2182 is the makespan of the single feasible
solution introduced in the initial population).

0 200 400 600 800 1000 1200
1400

1500

1600

1700

1800

1900

2000

2100

2200

Generation

M
ak

es
pa

n

 Fig 3 Variation of makespan for 15x5 problem (C1= 1e-3)

It is observed that, the probability of getting more
feasible schedules is increased while the value of C1=
0.001 or higher. A converged makespan value close to
the optimum value has been obtained for C1= 1.0 e-7.
The low value of C1 helps the algorithm to explore new
search areas with more feasible solutions. The study has
shown that the solution quality has not improved with
C1 values lower than 1e-7.

Table 7 Convergence behavior with different values of C1

C1 Convergence Behavior Makespan
2 Not getting other feasible solutions 2182
1 Not getting other feasible solutions 2182

0.1 Not getting other feasible solutions 2182
0.01 Not getting other feasible solutions 2182
1e-3 Getting Converging solutions 1457
1e-4 Getting Converging solutions 1257
1e-5 Getting Converging solutions 1173
1e-6 Getting Converging solutions 1113
1e-7 Getting Converging solutions close

to optimum
1020

1e-8 Getting Converging solutions close
to optimum

1020

4.5 Effect of Swarm confidence factor (C2)
This factor represents the influence of social
collaboration among the particles, which compares a
particle’s current position to that of the best particle in
the swarm. The effect of C2 has been studied on a 6x6
problem (FT-06). The convergence behavior of
makespan with generation for C2=4 is shown in Fig 4.

0 50 100 150 200 250 300 350 400 450 500 550

60

70

80

90

100

110

120

130

Generations

M
ak

es
pa

n

 Fig 4 Variation of makespan for 6x6 problem (C2=4)

Table 8. summarizes the study on influence of swarm
confidence factor on the performance of the algorithm. A
very low value of C2 (0.001) did not lead to generation
of additional feasible schedules. As the value of C2 is
increased many feasible schedules with higher makespan
values have been obtained. The best performance was
obtained at C2=4, with a converged makespan value of
60, which is very close to optimum. Much higher values
of C2 resulted in solutions which are away from
optimum.

Table 8 Convergence behavior at different values of C2
C2 Convergence behavior Makespan

0.001 Not getting further feasible solutions 109
0.1 Getting feasible solutions, converges

to a higher value
130

1 Getting feasible solutions but
converges at higher value

130

2 Getting feasible solutions but
converges at higher value

130

3 Getting feasible solutions but
converges very slowly at higher value

130

3.5 Getting feasible solutions but
converges very slowly at higher value

130

3.8 Getting feasible solutions and
converges at lower value

73

4 Getting feasible solutions and
converges at lower value close to
optimum

60

4.5 Getting feasible solutions and
converges at value away from
optimum

75

Proceedings of the 11th WSEAS International Conference on SYSTEMS, Agios Nikolaos, Crete Island, Greece, July 23-25, 2007 377

The PSO algorithm for the JSS problem is coded in
MATLAB and run on an Intel Pentium IV PC with 512
MB memory. This study has helped to identify the
influence of different PSO parameters for a Job Shop
Scheduling problem. The final setting of PSO
parameters for JSSP is summarized in Table 9.

Table 9 Final parameter setting suggested in PSO

algorithm for the JSSP

It is seen that large population leads to better solutions as
it ensures more feasible solutions. However a swarm size
of more than 500 is not recommended. The influence of
inertia factor and self confidence factor are relatively
less compared to swarm confidence factor in obtaining
global optimum solutions. When the problem size is
large, since no mechanism is employed in this study to
screen the infeasible solutions, the algorithm took more
number of generations to reach convergence. If a hybrid
algorithm is employed with a tabu search the number of
unwanted searches can be avoided and convergence
behavior can be improved.

5. Conclusion
This paper described an application of PSO in a discrete
optimization problem by incorporating SPV rule. The
present study is a humble attempt to investigate the
application of Particle Swarm Optimization algorithm in
solving the Static Job Shop Scheduling problem which is
one of the hardest combinatorial optimization problems.
The effect of five PSO parameters (Swarm size, Number
of generations, Inertia weight, Self confidence factor
and Swarm confidence factor) on the performance of the
algorithm in benchmark problems is studied and an
optimum combination of the parameters is suggested.
Being a recent technique, the parameter setting for PSO
still needs tuning to get better performance in job shop
environment. It is hoped that the findings from the
investigations will help in obtaining a better insight into
the algorithm and will lead to application of PSO in
other areas.

References:

[1] Eberhart R.C., J.Kennedy, A new optimizer using

particle swarm theory, Proceedings of the Sixth
International Symposium on Micro Machine and
Human Science, Japan, 1995, pp.39-43.

[2] Fatih Tasgetiren M, Yun-Chia Liang, Mehmet
Sevkli, Gunes Gencyilmaz, Particle Swarm
Optimization Algorithm for Makespan and
Maximum Lateness Minimization in Permutation
Flowshop Sequencing Problem, Department of
Management, Fatih University, 2005.

[3] Fischer.H, Thompson.G.L, Probabalistic learning
combinations of local job shop scheduling rules,
Industrial scheduling, Prentice-hall, Engle Cliffs,
NJ, 1963, pp.225-251.

[4] Jayamohan M.S, Dispatching rules for Dynamic Job
shop scheduling with time based and cost based
measures of performance. Thesis, Dept. of
Humanities and Social sciences, IIT. Madras.1999’

[5] Jose Fernado Goncalves,Jorge Jose de Magalhades
Mendes, Mauricio G.C.Resende, A Hybrid Genetic
Algorithm for Job Shop Scheduling Problem, AT&T
Labs Research technical report, 2002.

[6] Loan Cristian Trelea, The particle swarm
optimization algorithm: convergence analysis and
parameter selection”, INA P-G, UMR Génie et
Microbiologie des Procédés Alimentaires,Thiverval-
Grignon, France,2003.

[7] Michael Pinedo, Scheduling-Theory,Algorithms and
systems. Prentice- Hall, New Jersey,1995.

[8] Vipin.J.S., Multi-objective flow shop scheduling
using nature inspired algorithms, Thesis, University
of Kerala, 2005.

[9] Yamada, T. and R. Nakano. Genetic Algorithm for
Job Shop Scheduling Problems. Proceedings of
Modern heuristics for decision support, Unicom
seminar, London, 1997, pp. 67-81.

[10] Zhigang Lian, Xingsheng, Bin Jiao, A similar
particle swarm optimization algorithm for
permutation flowshop scheduling to minimize
makespan. Journal of applied mathematics and
computation. 2005.

Parameter Value

Swarm size (Ps) 500

Inertia factor (w) 1.0 e-6 to 1.0 e-7

Self confidence factor (C1) 1.0 e-7.

Swarm confidence factor (C2) 4

Number of generations (Mg)
Vary-with problem

size

Proceedings of the 11th WSEAS International Conference on SYSTEMS, Agios Nikolaos, Crete Island, Greece, July 23-25, 2007 378

	3.2 Initial Population Generation
	4.1 Effect of Swarm size (Ps)
	
	4.2 Effect of Number of Generations (Mg)
	4.3 Effect of Inertia factor (w)
	4.3 Effect of Self Confidence factor (C1)
	4.5 Effect of Swarm confidence factor (C2)

