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Abstract: - Particle Swarm Optimization (PSO) is one of the latest nature inspired meta-heuristic algorithms based on 
the metaphor of social interaction and communication such as bird flocking and fish schooling. PSO is a population 
based algorithm for finding optimal regions of complex search spaces through interaction of individuals in the 
population. In PSO, a set of randomly generated solutions (initial swarm) navigate in the design space towards the 
optimal solution over a number of iterations (moves) based on large amount of information about the design space that 
is assimilated and shared by the members of the swarm.  The solution of PSO depend on the parameter setting such as 
swarm size, number of generations, inertia factor, self confidence factor and swarm confidence factor. This work 
describes the study on the influence of parameter settings in  PSO algorithm  in solving the Static Job Shop Scheduling 
Problem, which is  a NP-hard combinatorial problem. Performance of the algorithm is tested on benchmark problems. 
The influence of each PSO parameter on the performance of algorithm is studied in detail. 
 
Key-Words:- Combinatorial optimization, nature inspired meta-heuristic, PSO, Scheduling, Job shop,  parameter tuning  
 
1 Introduction 
 
Particle Swarm Optimization (PSO) algorithm developed 
by Eberhart and Kennedy [1],  is applied extensively for 
finding optimal solutions in a large number of  problems. 
PSO, inspired by the behavior of fish schooling and bird 
flocking,  employs a set of solutions (swarm) to search 
the solution space.    Each member solution is called a 
particle, and it  moves around in the multi-dimensional 
search space with a velocity constantly updated by the 
particle’s inertia, the experience of the particle, and the 
experience of the whole swarm. PSO was first 
introduced to optimize various continuous nonlinear 
functions. The advantages of PSO algorithm such as 
simple structure, ease of implementation, speed to get 
the solutions, and robustness made it very popular in a 
short period of time. Fatih Tasgetiren et. al [2] proposed 
the Smallest Position Value (SPV) rule, to convert 
continuous position values to discrete operation 
sequence enabling to extend the scope of PSO to 
combinatorial problems. The PSO applied to 
permutation flowshop can be seen in [10] and an 
application of SPV rule based PSO algorithm in multi-
objective flow shop scheduling is found in [8]. 
 
Job Shop Scheduling (JSS) problems have been studied 
for a long time and  is perhaps the most general and 
complex of all types of shop scheduling problems. Since 
it is a constrained optimization problem, the possibility 
of getting a large number of feasible solutions is less as 

compared to flow shop scheduling problem[7]. It is 
difficult to reach the optimal solution in a short time, 
since the problems have a very wide solution space and 
there is no guarantee to reach a better state after a 
feasible state. Small size instances of the JSS problem 
can be solved within reasonable computational time by 
exact algorithms such as branch-and-bound and the time 
orientation approach. However, when the problem size 
increases, the computational time of exact methods 
grows exponentially. On the other hand heuristic 
algorithms require generally acceptable time and 
memory requirements, but do not guarantee optimality 
of the final solution. The most recent research on JSS 
problems has been focused on heuristic algorithms. The 
solution techniques of heuristic algorithms can be 
broadly classified into two groups: meta-heuristics and 
local search type heuristics[4]. In the first category, 
Simulated Annealing (SA), Genetic Algorithm 
(GA),Tabu Search (TS), Ant Colony Optimization 
(ACO), Hybrid SA and GA[5],  Neural Network (NN), 
have provided abundant research. The latter group 
consists of shifting bottleneck procedure, Priority 
Dispatching rules, Randomized dispatching rules, 
Guided local search, constraint propagation and parallel 
Greedy Randomized Adaptive Search Procedure 
(GRASP). In this work, the JSS problem is solved by 
PSO algorithm and a detailed study on the influence of 
various PSO parameters on the performance of the 
algorithm in the Job shop context  is conducted.  
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2 Problem Description 
 
The JSS problem with the objective function of 
minimizing makespan can be stated as follows;  
 
There are n jobs and each of the jobs is to be processed 
without preemption by m machines. Each job consists of 
m operations that own a predetermined processing order 
through machines. Each machine can handle no more 
than one job at a time and each job must visit each 
machine only once. The release time of all jobs is zero. 
Set-up and knock-down times on each machine are 
included in the processing time. An example of 3x3 
JSSP is given in the Table 1. The data includes the 
routing of each job and the processing time for each 
operation (in parentheses) [9]. 
 

Table 1.   A 3x3 JSS problem  

 

The overall objective is to minimize the completion time 
of whole schedule(overall completion time of all jobs).  

 
The objective function is,   Minimize  maxC
where                                   (1)     njjCC ..,2,1max }{max ==

jC  is the completion time of  jth job, and  n is the total  
number of jobs. 
 
3   PSO Algorithm in Job Shop Problem 
 
3.1 Solution Representation 
In order to construct a direct relationship between the 
problem domain (JSS problem) and the PSO particles, n 
x m number of dimensions for as much number of 
operations is used. The particle Xti = [xti1, xti2,...,xtnm ] 
corresponds to the continuous position values for n x m 
operations of a particular solution i for tth iteration. The 
particle itself does not present a sequence of operation or 
solution. Instead, the Shortest Position Value (SPV) 
rule[2] is used to determine the permutation implied by 
the position values xij

t  of particle Xit. According to the 
SPV rule, the operation corresponding to the smallest 
position value is assigned to be the first operation in the 
permutation πi

t; the operation corresponding to the next 
higher position value is assigned to be the second 
operation, and so on (operations are sorted according to 
the position values xij

t to construct the operation 
sequence πi

t).  Representation of a particle(Xi) for a 3x3 
JSS problem, with position values  and corresponding 
operation sequence(πi) generated using SPV rule  are 

shown in Table 2.  For a 3 job, 3 machine problem, there 
will be 9 operations to be scheduled. The second row 
represents the randomly generated position values for 9 
operations. Third row sorts the position values in 
ascending order based on SPV rule. Fourth row (πi ) 
represents a single solution in the form of operation 
sequence. 

 

       Table 2.  Solution representation using SPV rule  

 

 

3.2 Initial Population Generation  
Normally in PSO algorithm, the initial population of 
particles are generated randomly. In the JSS problem, 
the probability of getting feasible solutions in the 
random generation of initial population is very low. In 
this work, one feasible schedule is generated by applying 
a priority dispatching rule (Shortest Processing Time 
rule - SPT) and used as the first particle in the initial 
population. The remaining (Ps-1) particles are generated 
randomly, where Ps is the total number of particles in 
the population or swarm. 
The following equation is used to construct the initial 
continuous position values of the particle:           

 X
0
ij = xmin + (xmax − xmin )* r1                                         (2) 

where xmin = −4, xmax= 4.0,  and r1 is a uniform random 
number between 0 and 1.  

Initial velocities are generated for each particle by a 
similar formula as follows:   

v
0

ij = vmin + (vmax − vmin )* r2                                          (3) 

where vmin = −4.0, vmax = 4.0, and r2 is a uniform 
random number between 0 and 1. 
 
3.3 The  computational procedure  
Step 1: Initialization  

Set iteration count, t = 0, Ps = the number of particles in 
the   swarm. Generate Ps particles with position vectors 
X and Velocity V randomly, 

 {Xi
0
, i =1,2,...,Ps},  where Xi

0
 =[x

0
i1, x

0
i2,.., x 

0
i(nxm) ]  

 {Vi
0 
,i =1,2,...,Ps},  where Vi =[v

0
i1,v

0
i2,...,v

0
i(nxm) ] 

Job Operations routing ( Processing time) 
1 1(3) 2(3) 3(3) 
2 1(2) 3(3) 2(4) 
3 2(3) 1(2) 3(1) 

Dimensions 
   n x m 
(No.of operation)  

1 
 

2 
 

3 
 

4 
 

5 
 

6 
 

7 
 

8 
 
9 

Position  
values (Xi) 2.

1 

3.
5 

0.
5 

1.
2 

-3
.6

 

0.
8 

2.
6 

-0
.3

 

-1
.5

 

Applying 
SPV rule -3

.6
 

-1
.5

 

-0
.3

 

0.
5 

0.
8 

1.
2 

2.
1 

2.
6 

3.
5 

Operation 
 order (πi ) 5 9 8 3 6 4 1 7 2 
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Apply the SPV rule to find the operation sequence 
except for the first particle. 

  π
0
i = [π

0
i1,π

0
i2,..,π

0
i(nxm)] of particle X

0
i for   i =2,3,...,Ps.  

Check the feasibility of each particle(operating   
sequence) by comparing it with the constraint.    

Find the fitness value (f – makespan) of each feasible  
particle in the swarm. Infeasible particles will be 
assigned with a makespan of very high value until they 
get a feasible solution in subsequent iterations.   

For each particle i in the swarm, set the personal best 
position values to the present position values (P

0
i = X

0
i ) 

and assign the fitness as the best fitness value,  fi
pb  

for     
i =1,2,..., Ps.  

When an infeasible solution gets a feasible solution in a 
subsequent iteration, the position values in that iteration 
will be set as personal best of that particle. 

Find the Global best, which is the best fitness value 
among the whole swarm such that,  

fl = min{ f
0

i } for i =1,2,...,Ps with its corresponding 

positions  X0
l .  

Set global best to G =X
0

l such that  

G
0
=[g1=xl,1,g2= xl,2 ,...,gnxm=xl nxm]with its fitness value  

f 
gb

= fl   

Step 2:  Update iteration counter (t =t+1). Update Inertia 

weight factor (w), 

   wt= a+{b x (Mg-h)/(Mg-1)}                                       (4) 

Where Mg is the maximum number of generations, h is 
the current iteration number.  
(Inertia weight is gradually reduced from a+b to a 
linearly as iteration proceeds) 
 
Step 3:     Update velocities and positions       

 vt
ij ={wt vt-1

ij +C1 r1 (p
t-1

ij −xt-1
ij )+C2 r2 (g

t-1
j −xij 

t-1 
)}     (5) 

Where C1 and C2 are Self confidence  and Swarm 
confidence factors,  r1 and r2 are uniform random 
numbers between (0, 1).  

 xij
t = xij

t−1 + vij
t                                                             (6)

       

Step 4: Apply the SPV rule to find the new permutations 
and calculate fitness. 

Step 5: Update personal best and global best  
If fi

t < fi 
pb  for i=1,2,.,Ps, then personal best is updated as 

Pi
t = Xi

t  and  fi 
pb= fi

t 

fl
t
 = min{ fi 

pb
 }, i =1,2,..., Ps;  l Є {i; i =1,2,..., Ps}.  

If  fl
t < f gb,  then the global best is updated as Gt= X l

t and             

f gb= fl
t 

Step 6: Termination criterion  
If the iteration count exceeds the maximum number 
of iterations, then stop; otherwise go to step 2. 

 
4   Parameter Study  
The performance of the PSO algorithm depends heavily 
on the parameter values used and tuning of the 
parameters is essential for the fast convergence of the 
solution [6].  The major parameters in the PSO algorithm 
are the swarm size, number of generations, inertia 
factor,  self confidence factor and swarm confidence 
factor. The details of the parameters used in this study 
are given  in Table 3.  
 

Table 3. Different parameters of PSO and its role 
PSO Parameter Role of parameter 
Swarm size ( Ps) Number of particles in  the 

population 
Number of Generations 
(Mg) 

Termination criteria 

Inertia factor (w) To control the effect of 
previous velocity on current 
velocity 

Self confidence factor 
(C1) 

To control the effect of 
Personal best on solution 

Swarm confidence factor 
(C2) 

To control the effect of Global 
best on solution 

 
The algorithm is applied on the benchmark problems of 
Fischer Thompson[3] of size 6x6 (FT-06), and Lawrence 
problems of sizes 10x5 (LA-01), 15x5 (LA-06), 20x5     
(LA-11, LA-10), 15x10 (LA-21), 20x10 (LA-26) and 
30x10 (LA-31).  

4.1 Effect of Swarm size (Ps) 
A 10 job x 5 machine problem(LA-01),  was considered 
for the study. The swarm size was varied between 50 to 
700. The variation in makespan with generations at 
different swarm size is shown in Figure 1. The table 4 
shows the converged makespan value for different 
swarm sizes. For a  swarm size of 500 particles, the 
value of makespan is 704. There was no further 
improvement in the value at higher swarm sizes. The 
study on different problem sets reveal that a swarm size 
of 500 gives the best performance at reasonable 
computation time. 
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Fig 1. Convergence behavior  with  different swarm size 
 
 

Table 4  Converged Makespan at different swarm sizes 
 

          Swarm-size (Ps) Makespan 
50 984 
75 886 
100 803 
200 794 
300 736 
400 712 
500 704 
600 704 
700 704 

 

4.2 Effect of Number of Generations ( Mg ) 
In order to fix a termination criteria, a study has been 
carried out to find the effect of Number of generations 
required on different sized problems. The swarm size has 
been fixed at 500.  Table 5 summarises  the results on 
different problem sizes. As the problem size increases, 
the number of generations required for convergence also 
increases. Therefore, the number of generations 
(termination criteria ) has to be varied with the problem 
size. This also points to one of the inherent limitations of 
PSO. 

        
       Table 5   Convergence behavior with problem size 

4.3 Effect of Inertia factor (w) 

Inertia factor is used in the algorithm to control the effect 
of previous velocity of a particle on its current velocity.  
It is given a high value during the start of the search 
process and gradually decreased linearly with time to the 
lower limit. The algorithm is tested on a 6 job x 6 
machine problem with different settings of inertia 
weight. The variation of makespan for a particular inertia 
factor  over the generations is shown in Fig 2.  
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Fig 2  Variation of makespan with  w =1.0 e-5 to 1.0 e-6  

(for a 6 x 6 problem) 
 
Table 6 summarises  the convergence of the algorithm at 
different settings of inertia factor. The converged 
makespan value is shown in column 3.  It has been 
observed that with a higher value of w (w=0.1 to 0.01), 
convergence rate is affected. Since the effect of previous 
velocity on current velocity is more in this case, it has 
higher tendency to keep the solution in the neighborhood 
of  the original solution preventing it from seeking a 
global optimum. On the other hand a lower value of 
inertia factor (w =1e-5 to 1e-6  ) results in a better solution  
within 200 generations.  As can be  seen from the table, 
an optimum value of makespan of 60 is obtained with an 
inertia factor setting of  1.0 e-6 to 1.0 e-7.   There was no 
further improvement in solution at w values lower than 
this setting. It is evident that for encouraging exploration 
and for getting more feasible solutions a very low value 
of inertia factor shall be used.  

 
Table 6.  Convergence behavior with different inertia 
factors  
 

Inertia factor 
        (w) 

Nature of Convergence Makespan

0.1 to 0.01 Not converging 130 
1.0 e-2 to 1.0 e-3 Not converging 130 
1.0 e-3 to 1.0 e-4 Converging to a lower value 83 
1.0 e-4 to 1.0 e-5 Converging to a lower value 73 
1.0 e-5 to 1.0 e-6 Converging to a lower value 67 
1.0 e-6 to 1.0 e-7 Converging to a lower 

value close to optimum 
60 

Problem 

 

code 
Problem 

size 

No. of 
operations 

in  a schedule 

Generation at 
which 

converges  
FT-06 6 x 6 36 170 
LA-01 10 x 5 50 538 
LA-06 15 x 5 75 712 
LA-11 20 x 5 100 1121 
LA-21 15 x 10 150 1322 
LA-26 20 x 10 200 1685 
LA-31 30 x 10 300 1936 
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4.3 Effect of Self Confidence factor ( C1 ) 
The importance to be given to the previous best position 
of each particle is determined by this factor. It is noted 
that this factor represents cognition, or the private 
thinking of the particle when comparing its current 
position to its own best.   The effect of C1 on algorithm 
is studied on  a 15x5 problem (LA-10).  C1 value is 
varied from 2 to 1.0 e-8.  Fig 3 shows the convergence 
with C1 = 1e-3. Table 7 summarises the nature of 
convergence. With high values of  C1, no additional 
feasible solutions are generated after the first generation 
(The value 2182 is the makespan of the single feasible 
solution introduced in the initial population).  
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  Fig 3  Variation of makespan for 15x5 problem (C1= 1e-3 ) 
 
It is observed that, the probability of getting more 
feasible schedules is increased while the value of  C1= 
0.001 or higher. A converged makespan value close to 
the optimum value has been obtained for C1= 1.0 e-7. 
The low value of C1 helps the algorithm to explore new 
search areas with more feasible solutions. The study has 
shown that the solution quality has not improved with 
C1 values lower than 1e-7. 
 
 
Table 7 Convergence behavior with different values of C1 
 

C1 Convergence Behavior Makespan
2 Not getting other feasible solutions 2182 
1 Not getting other feasible solutions 2182 

0.1 Not getting other feasible solutions 2182 
0.01 Not getting other feasible solutions 2182 
1e-3 Getting Converging solutions 1457 
1e-4 Getting Converging solutions 1257 
1e-5 Getting Converging solutions 1173 
1e-6 Getting Converging solutions 1113 
1e-7 Getting Converging solutions close 

to optimum 
1020 

1e-8 Getting Converging solutions close 
to optimum 

1020 

 

4.5 Effect of Swarm confidence factor  ( C2 ) 
This factor represents the influence of social 
collaboration among the particles, which compares a 
particle’s current position to that of the best particle in 
the swarm. The effect of C2 has been studied on a 6x6 
problem (FT-06). The convergence behavior of 
makespan with generation for C2=4  is shown in Fig 4.  
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     Fig 4   Variation of makespan for 6x6 problem ( C2=4) 
 
Table 8. summarizes the study on influence of swarm 
confidence factor on the performance of the algorithm. A 
very low value of C2 ( 0.001) did not lead to generation 
of additional feasible schedules. As the value of C2 is 
increased many feasible schedules with higher makespan 
values have been obtained. The best performance was 
obtained at C2=4, with a converged makespan value of 
60, which is very close to optimum. Much higher values 
of C2 resulted in solutions which are away from 
optimum. 

 
Table 8  Convergence behavior at different values of C2 
C2 Convergence behavior Makespan 

0.001 Not getting further feasible solutions 109 
0.1 Getting feasible solutions,  converges 

to a  higher value 
130 

1 Getting feasible solutions but 
converges at higher value 

130 

2 Getting feasible solutions but 
converges at higher value 

130 

3 Getting feasible solutions but 
converges very slowly at higher value 

130 

3.5 Getting feasible solutions but 
converges very slowly at higher value 

130 

3.8 Getting feasible solutions and 
converges at lower value 

73 

4 Getting feasible solutions and 
converges at lower value close to 
optimum 

60 

4.5 Getting feasible solutions and 
converges at value away from 
optimum 

75 

 
 

 

Proceedings of the 11th WSEAS International Conference on SYSTEMS, Agios Nikolaos, Crete Island, Greece, July 23-25, 2007         377



The PSO algorithm for the JSS problem is coded in 
MATLAB and run on an Intel Pentium IV PC with 512 
MB memory. This study has helped to identify the 
influence of  different PSO parameters for a Job Shop 
Scheduling problem.  The final setting of PSO 
parameters for JSSP  is summarized in Table 9.  

 
Table 9  Final parameter setting suggested in PSO 

algorithm for the JSSP 

 
It is seen that large population leads to better solutions as 
it ensures more feasible solutions. However a swarm size 
of more than 500 is not recommended. The influence of 
inertia factor and self confidence factor  are relatively 
less compared to swarm confidence factor in obtaining 
global optimum solutions. When the problem size is 
large, since no mechanism is employed in this study to 
screen the infeasible solutions, the algorithm took more 
number of generations to reach convergence.  If a hybrid 
algorithm is employed with a tabu search the number of 
unwanted searches can be avoided and convergence 
behavior  can be improved.   
 
5. Conclusion 
This paper described an application of PSO in a discrete 
optimization problem by incorporating SPV rule. The 
present study is a humble attempt to investigate the 
application of Particle Swarm Optimization algorithm in 
solving the Static Job Shop Scheduling problem which is 
one of the hardest combinatorial optimization problems. 
The effect of five PSO parameters (Swarm size, Number 
of generations, Inertia weight,  Self confidence factor 
and Swarm confidence factor) on the performance of the 
algorithm in benchmark problems is studied and an 
optimum combination of the parameters is suggested. 
Being a  recent technique, the parameter setting for PSO 
still needs tuning to get better performance in job shop 
environment. It is hoped that the findings from the 
investigations will help in obtaining a better insight into 
the algorithm and will lead to application of PSO in 
other areas. 
 
 
 
 

References: 
 
[1] Eberhart R.C., J.Kennedy, A new optimizer using 

particle swarm theory, Proceedings of the Sixth 
International Symposium on Micro Machine and 
Human Science, Japan, 1995, pp.39-43. 

[2] Fatih Tasgetiren M, Yun-Chia Liang, Mehmet 
Sevkli, Gunes Gencyilmaz, Particle Swarm 
Optimization   Algorithm for Makespan and 
Maximum Lateness Minimization in Permutation 
Flowshop Sequencing Problem, Department of 
Management, Fatih University,  2005. 

[3] Fischer.H, Thompson.G.L, Probabalistic learning 
combinations of local job shop scheduling rules, 
Industrial scheduling, Prentice-hall, Engle Cliffs,  
NJ, 1963,  pp.225-251.  

[4] Jayamohan M.S, Dispatching rules for Dynamic Job 
shop scheduling with time based and cost based 
measures of performance. Thesis, Dept. of 
Humanities and Social sciences, IIT. Madras.1999’  

[5] Jose Fernado Goncalves,Jorge Jose de Magalhades 
Mendes, Mauricio G.C.Resende, A Hybrid Genetic 
Algorithm for Job Shop Scheduling Problem, AT&T 
Labs Research technical report, 2002.    

[6] Loan Cristian Trelea, The particle swarm 
optimization algorithm: convergence analysis and 
parameter selection”,  INA P-G, UMR Génie et   
Microbiologie des Procédés Alimentaires,Thiverval-
Grignon, France,2003. 

[7] Michael Pinedo, Scheduling-Theory,Algorithms and 
systems. Prentice- Hall, New Jersey,1995. 

[8] Vipin.J.S., Multi-objective flow shop scheduling 
using nature inspired algorithms, Thesis, University 
of Kerala, 2005. 

[9] Yamada, T. and R. Nakano. Genetic Algorithm for 
Job Shop Scheduling Problems. Proceedings of 
Modern heuristics for decision support, Unicom 
seminar, London, 1997,  pp. 67-81. 

[10] Zhigang Lian, Xingsheng, Bin Jiao, A similar 
particle swarm optimization algorithm for 
permutation flowshop scheduling to minimize 
makespan. Journal of applied mathematics and 
computation. 2005. 

 

Parameter Value 

Swarm size ( Ps) 500 

Inertia factor (w) 1.0 e-6 to 1.0 e-7 

Self confidence factor (C1) 1.0 e-7. 

Swarm confidence factor (C2) 4 

Number of generations ( Mg) 
Vary-with problem 

size 
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