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Abstract: - The problem of defining the distribution of real zeros for random n-th order polynomials whose 
coefficients have given continuous joint probability density function considered. A new algorithm for defining 
the distribution of real zeros via multiple integration presented. A theorem validating the algorithm proved. 
Realization and compatibility of the algorithm discussed.  
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1   Introduction 
Analysis of behavior of zeros of random 
polynomials has been a subject of active research for 
several decades motivated  by various applications 
in statistics , spectral analysis, physics, economy and 
other fields (some new results on random 
polynomials and their applications are described in 
[1],[5],[8],[11]). One of the main problems in the 
theory of random polynomials is defining the 
distribution or real zeros  (see [10],[11]).  Computer 
simulation remains the only available general 
method for solving the problem for arbitrary 
continuous joint probability density function (jpdf) 
of polynomial coefficients even for polynomials of 
relatively low degrees. Unfortunately, standard 
simulation algorithms and software can't be 
effectively utilized for solving the problem, 
therefore developing specific methods for defining 
the distribution of real zeros of random polynomials 
seems highly desirable. The latter motivated us to 
develop the algorithm presented in the current article 
. 
In order to describe the algorithm and prove its 
validity we introduce some notations. 
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denote a cube in 1+nR  which defines the boundaries 
for the coefficients. 
Let B denote the union of k nonintersecting intervals  
 kidlB iii ,1),,( ==  in R. 

Let  denote an 
(n+1) – dimensional random vector ,whose elements 
are random variables, not necessarily independent, 
which are coefficients of the random polynomial 
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Obviously , nnnn k ≤+++ ...21  must be satisfied. 
Let   denote the probability that 

 has  zeros in  ,  zeros in , 
…,  zeros in . 
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the number of zeros of belonging to  

equals   or equals  plus an even integer, the 
number of zeros that belong to  equals  or 
equals  plus an even integer , etc.  
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)(,...,
*

21 BP knnn

)),(( xaF ω
→

1n 1B 1n

1B 2n 2n

2B

Since the Euclidean measure of the set of vectors   
which have one of the numbers 

→

a
kirl ii ,1,, =  as their 

zero, obviously equals zero , we have  

(1)  

(2)   

→→

∫= adapBP
BQ

nnn

knn

k
)()(

)(
,...,

,...,1

21

→→

∫= adapBP
BQ

nnn

knn

k )()(
)(*

,...,
*

,...,1

21

In order to calculate the integral (2), we need to 
examine . )(*

,...2,1
BQ

knnn

 
2 Statement and Proof of the Theorem 
 
We formulate the theorem which  validates the 
algorithm presented  in section 3. 
Theorem 1  belongs to a union of a 

finite number (which is less than ) of 
nonintersecting convex polyhedrons in S. 

)(*
,...2,1

BQ
knnn

kn )22(2 +

 
Proof: The proof of the Theorem 1 is based on the 
well-known Fourier-Budan theorem (see [4] ). 
Fourier- Budan theorem For any real 
polynomial p(x) of degree n and any real α  and β 
such as α<β, ρ(α)≠0 and ρ(β )≠0 the number of 
zeros in the interval [α, β] (each zero counted 
with proper multiplicity) equals υ(α)-υ(β) minus 
an even nonnegative integer, where υ(x) denotes 
the number of sign changes in the sequence 
{ }.  )(),...,(),( ' xpxpxp n

Let's first examine the set  in S consisting 

of all vectors  for which the corresponding 
polynomial  has exactly  zeros in . 

)( 11
BQ

n

→

a
1n 1B

Consider the set  of all 
sequences of pluses and minuses which consist of 2 
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distinct sequences belonging to SMP can be  easily 
calculated. For each sequence  from 

 we have a corresponding system of linear 
inequalities   The first 
inequality that belongs to  has 
the form  if the first element 

of   is "+"  or has the form  if 

the first element of is "-" .The second 
inequality in  has the form 
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"-".The following inequalities up to n-th are defined 
analogously. 
The (n+1) –th inequality in  is 

 or  according  to the 
corresponding element of  . The 
inequalities with ordinary numbers from n+2 to 
2n+2 are defined analogously to the previous ones, 
we just substitute r instead of  l in each of the 
previous inequalities. The double inequalities 
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follows that it belongs to the union of a finite 
number of nonintersecting convex polyhedrons since 
the intersection of two or more convex polyhedrons 
that belong to S is a convex polyhedron. 
Corollary 1 (2) equals the sum of a finite number 
of multiple integrals, each of which is calculated 
over a convex  polyhedron defined by a system of 
linear inequalities , the polyhedrons have no 
intersections, and the integrand  is  
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Corollary 2  In order to state Corollary 2 we just 
need to substitute (1) instead of (2)  in the statement  
of  Corollary 1.  
We do not find it necessary to give the proof, but 
just note that, obviously, the probability that 

 has exactly  zeros in  ,  or 
more zeros in  ,  or more zeros in  ,etc. 
,equals  
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zeros in ,  or more zeros  in ,etc., can be 
expressed as 
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which shows how the formula which gives an 
explicit expression for (1) as a sum of multiple 
integrals over convex polyhedrons can be obtained. 
 
3. Algorithm Description 
Corollary 2 enables one to present the following 
algorithm for defining the probability that a random 

polynomial   has exactly   zeros in 
,  zeros in ,…,  zeros in  provided 

that the given joint probability density function of 
coefficients is continuous (joint probability density 
function may take non-zero values in some bounded 

domain D in 

)),(( xaF ω
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1+nR  or be positive for any  
which is  the case for Gaussian random variables). 
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Step 1: Define the boundaries for random variables        

)(),...,(),( 10 ωωω naaa .If the probability density 
function takes non-zero values in some bounded 
domain D in 1+nR , the minimal possible (n+1)-
dimensional cube of the form S has to be defined 
which includes D . If the probability density 

function is positive for any , the minimal 
cube S should be defined which satisfies 

, where ε denotes the accuracy 

required in calculating (1) . 
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Step 2: Define all the systems of inequalities 
(polyhedrons), the integration over which is 
necessary in order to calculate the desired  
probability. 
Step  3:  Calculate the  multiple integrals over the  
defined   polyhedrons. 
Step  4: Summarize the calculated integrals. 
 
4. Algorithm Realization 
 
The main advantage of the presented algorithm is a 
significant restriction of the integration domain . 

In many cases the volume of is 10)(,...,,
*

21
BQ

knnn
n+1 

times smaller than the volume of S. 
In order to realize the presented algorithm , the 
software for multiple integration over convex 
polyhedrons (step 3) must be combined with 
software for realization of step 2.Recently developed 
routines for multiple integration over complicated 
domains are described in [7] and  [12], and a routine 
designed for integration over convex polyhedrons is 
presented in [9].  All these routines can be utilized in 
realization of the presented algorithm with 
nonsignificant  modifications. 
 
5. Conclusive Remarks 
 
Remark 1 The number of integrals which need to 
be calculated according to the presented algorithm 
grows rapidly with the growth of  n ,but for 
relatively small values of n the calculation of 
probabilities (1) via computer routines implementing 
the algorithm appear to be effective and compatible. 
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Remark 2 Developing the software routines 
implementing the presented method , defining the 
maximum value  of n for which the algorithm is 
realizable, estimation of its effectiveness and 
comparison with alternative methods are the main 
fields of planned future research. 
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