
C# and .NET Framework for uC communication protocol 
implementation 

 
C.D. CĂLEANU, V. TIPONUŢ, I. BOGDANOV, S. IONEL, I. LIE 

Applied Electronics Department,  Faculty of Electronics and Telecommunications 
University “POLITEHNICA” Timişoara 
V. Pârvan Av, no. 2, 300223 Timişoara 

ROMÂNIA 
catalin.caleanuhttp://www.etc.upt.ro 

 
 

Abstract: - This paper describes an integrating hardware and software ensemble for the development of 
microcontroller-based computer numerical control system. The discuss is focused on design and 
implementation of the communication between the PC and a numerical control machine. Among topics 
covered are: the C#/.NET serial port programming, and further, how to create a Windows application for 
sending, trough a COM port, the Computer Aided Design/Manufacturing data needed by a numerical control 
machine. A PIC microcontroller-based communication hardware module was developed and tested. 
 
Key-Words: C# serial port programming, PIC microcontroller, CNC machine. 
 
1   Introduction 
The parts that make up a Computer Numerical 
Control (CNC) system could be classified as [1]: 
 a) The software components represented by the 
Computer Aided Design (CAD) and Computer 
Aided Manufacturing (CAM) programs that allow 
the users to design their products and further convert 
the design into code instructions, e.g. G code, 
programs that interpret the instructions and operate 
the machine. 
b) The hardware components usually represented 
by a Personal Computer (PC), the afferent 
communication ports (parallel, serial, USB) that 
send the signals to the machine’s controller. The 
controller that reads the signals generated by the PC 
via the program and the communication port 
operates stepper motors in a controlled manner. As a 
result, the machine moves each axis (usually two or 
three-axis machines) individually or simultaneously.  
 As a practical example, let’s suppose that a CNC 
machine is required to create the geometric entity 
depicted by fig. 1. 
The two axis controller must be fed with at least two 
kind of information: two words, one for X axis and 
the other for the Y axis, which quantify the 
displacement measured in motor’s encoder steps. In 
our project these words offers a resolution of 12 bits 
each. Another 8 bits are used for coding additional 
information. For example, on path A-B the cutting 
tool must be off then, in B point, it must be 
activated. Therefore, the axis controller receives, 
one time, a 32 bits word. 
 

 

 
 
Fig. 1. The CNC machine tool must produce a 
formed surface on a workpiece. 
 
 Integrating software and hardware designed to 
manipulate streams of bytes, between a PC and a 
power block commanding axis motors is the concern 
of this paper. 
 
 
2   Programming the Serial Port using 
C# and .NET framework 
 
 
2.1 The selection of the communication 
interface 
In order to exchange data between the application 
software running on the PC and the microcontroller-
based hardware which command the CNC machine 

Cutting tool on 

Initial tool position 
(Cutting tool off) 

A 

B 

Proceedings of the 11th WSEAS International Conference on COMPUTERS, Agios Nikolaos, Crete Island, Greece, July 26-28, 2007         583



the parallel and the serial port represents good 
candidates. Although the newly USB interface offers 
higher data transfer rates, it is not present on all PC 
motherboards, especially older models lack this 
functionality. 
We decide to make use of the serial port for our 
communication purpose although is harder to 
interface than the parallel port. 
In most cases, any device you connect to the serial 
port will need the serial transmission converted back 
to parallel so that it can be used. On the software 
side of things, there are many more registers that 
you have to attend to than on a Standard Parallel 
Port (SPP). 
But there are also other advantages of using serial 
data transfer rather than parallel [2]: 
a) The serial port can have a maximum swing of 
50V compared to the parallel port which has a 
maximum swing of 5 Volts. Therefore cable loss is 
not going to be as much of a problem for serial 
cables as they are for parallel. As a consequence, 
serial cables can be longer than parallel cables and 
safer in a noisily environment.  
b) If your device needs to be mounted a far distance 
away from the computer then 3 core cable (Null 
Modem Configuration) is going to be a lot cheaper 
that running 19 or 25 core cable. 
c) Many microcontrollers have in built SCI (Serial 
Communications Interfaces) which can be used to 
talk to the outside world. Serial Communication 
reduces the pin count of these MPU's. Only two pins 
are commonly used, Transmit Data (TXD) and 
Receive Data (RXD) compared with at least 8 pins if 
you use an 8 bit Parallel method. 
 
 
2.2   Serial Communication using C#  
In June 2000, Microsoft announced both the .NET 
(pronounced DOT NET) platform and a new 
programming language called C# (pronounced C 
Sharp) [3] – [5]. The programming language of 
choice for .NET platform is C#. The language is 
powerful, productive, type safe, has a rich and clear 
syntax and, most importantly, provides a 
conceptually appealing implementation of the 
object-oriented paradigm.  
      Serial communication could be done in a simple 
and straightforward manner using the  specifications 
of C# and .NET framework [6], [7]. 
     The System.IO.Ports namespace contains classes 
for controlling serial ports. The most important class 
is the SerialPort class. It provides a framework for 
synchronous and event-driven I/O, access to pin and 
break states, and access to serial driver properties. It 

can be used to wrap stream objects, allowing the 
serial port to be accessed by classes that use streams.  
     Programmatically it could be created by one of 
the seven public constructors. Initializes a new 
instance of the SerialPort class using the specified 
port name, baud rate, parity bit, data bits and stop bit 
is the most complex form of these constructors. 
     In order to memorize the program’s session 
COM port settings we will create a serialized object 
which will be easily load/saved form/to disk. 
Serialization is the process of converting the state of 
an object into a form that can be persisted or 
transported. During this process, the public and 
private fields of the object and the name of the class, 
including the assembly containing the class, are 
converted to a stream of bytes, which is then written 
to a data stream. The easiest way to make a class 
serializable is to mark it with the Serializable 
attribute as follows. 
 
[Serializable] 
public class MyPortSerialized 
{ 
public int PortName; 
  public int BaudRate; 
  public int DataBits; 
  public int StopBits; 
  public int Parity; 
  public int Handshake; 
} 
 
The following example uses a binary formatter to do 
the serialization. It is create an instance of the 
stream and the formatte and then call the Serialize 
method on the formatter. The stream and the object 
to serialize are provided as parameters to this call.  
 
private void defaultButton_Click(object sender, EventArgs e) 
 { 
  MyPortSerialized PortSerialized = new 
MyPortSerialized(); 
 
  PortSerialized.PortName  = 
this.portComboBox.SelectedIndex; 
  PortSerialized.BaudRate  = 
this.transferSpeedComboBox.SelectedIndex; 
  PortSerialized.DataBits  = 
this.dataBitsComboBox.SelectedIndex; 
  PortSerialized.StopBits  = 
this.stopBitscomboBox.SelectedIndex; 
  PortSerialized.Parity    = 
this.parityControlComboBox.SelectedIndex; 
  PortSerialized.Handshake = 
this.flowControlComboBox.SelectedIndex; 
  
  FileStream fs = new FileStream("default.cfg", 
FileMode.OpenOrCreate); 
  BinaryFormatter bf = new BinaryFormatter(); 
  bf.Serialize(fs, PortSerialized); 
  fs.Close(); 
} 

Proceedings of the 11th WSEAS International Conference on COMPUTERS, Agios Nikolaos, Crete Island, Greece, July 26-28, 2007         584



 
The BinaryFormatter used above is very efficient 
and produces a compact byte stream. All objects 
serialized with this formatter can also be 
deserialized with it, which makes it an ideal tool for 
serializing objects that will be deserialized on the 
.NET Framework. The complement of serialization 
is deserialization, which converts a stream into an 
object.  
     A TextBox control is used for displaying the 
codes to be sent/received via RS232. When data 
received event is trigger, ReadExisting() 
SerialPort’s public method is invoked. It reads all 
immediately available bytes, based on the encoding, 
in both the stream and the input buffer of the 
SerialPort object and put them in the Receive 
Textbox. 
     Through software XON/XOFF control protocol 
the hardware device request more bytes to read. 
XOFF is a software control sent to stop the 
transmission of data and the XON control is sent to 
resume the transmission. These controls are used 
instead of Request to Send (RTS) and Clear to Send 
(CTS) hardware controls. 
     Then Write() SerialPort’s public method is used 
for send a specified count of bytes (for our 
application only 4 bytes at once) to an output buffer 
at the specified offset. 
     All the above mentioned operations were 
implemented by the form presented in fig. 2. 
 

 
 

Fig. 2. The main application form. 
 
 
3   The Hardware 
In this chapter, a PIC microcontroller-based system 
allowing serial data transferred is presented. 
     Basically, this circuit intermediate between the 
PC serial port and the power block providing servo 
control of CNC machine’s DC motors and 
incremental encoders. 

 
3.1   Schematics 
 At the design core stands Microchip’s PIC16F877A 
[8]-[10], a 40-pin enhanced flash microcontroller. 
Its main role is to communicate with PC COM port 
via the Universal Synchronous Asynchronous 
Receiver Transmitter (USART) module, also known 
as a Serial Communications Interface or (SCI). 
     The USART can be configured as a full-duplex 
asynchronous system that can communicate with 
peripheral devices, such as CRT terminals and 
personal computers, or it can be configured as a 
half-duplex synchronous system that can 
communicate with peripheral devices, such as A/D 
or D/A integrated circuits, serial EEPROMs, etc. 
     Also, the hardware system implements an 80 
bytes software FIFO buffer. At the beginning of the 
transmission, the buffer is filled. Then, it receives 
the next 4 bytes from the PC only when an interrupt 
is raised (RA0/INT pin) by motors power block.  
      The SN74AHCT573 devices are octal 
transparent D-type latches. When the latch-enable 
(LE) input is high, the Q outputs follow the data (D) 
inputs. When LE is low, the Q outputs are latched at 
the logic levels of the D inputs. A buffered output-
enable (OE) input can be used to place the eight 
outputs in either a normal logic state (high or low) 
or the high-impedance state. In the high-impedance 
state, the outputs neither load nor drive the bus lines 
significantly. The high-impedance state and 
increased drive provide the capability to drive bus 
lines without interface or pull-up components. 
     Using RA0-RA3 uC’s lines programmed as 
outputs, the latches are selected for receiving a byte 
from uC’s FIFO. When all four latches are loaded, 
using RE0 line connected to all buffers output-
enable pin, the four bytes word is available for 
reading at 2x20 pins HDD IDE type connector. 
      In order to interface the PC COM port with the 
digital hardware, a MAX232 level converter, 
transforming RS-232 levels back into 0 and 5 Volts, 
has been used. It includes a Charge Pump, which 
generates +10V and -10V from a single 5v supply. 
This I.C. also includes two receivers and two 
transmitters in the same package.  
     A LM340T- 5.0 monolithic 3-terminal positive 
voltage regulator assures a smooth and noiseless 5V 
power supply for the entire circuit. 
     The schematic of the communication ensemble is 
shown in fig. 3. 
       
 
 
 

Proceedings of the 11th WSEAS International Conference on COMPUTERS, Agios Nikolaos, Crete Island, Greece, July 26-28, 2007         585



 
 

Fig. 3. Using a PIC16F877 uC, 32 bits words are transferred via RS232 
 from the PC to the CNC machine.  

 
3.2   Programming the PIC16F877 uC 
 Both the sender (for example, the PC) and the 
receiver (for example, the CNC milling machine) 
must be set up to use the same communication 
parameters. For example, PC COM1 port is set at 
19.2Kb/s communication speed (see fig. 4). uC 
SPBRG register is responsible for the USART 
communication speed, according to the relation: 
Baud Rate = FOSC/(16 (SPBRG value (decimal)  + 
1)). Taking into account the 4Mhz oscillator crystal 
(see fig. 3) SPBRG will be loaded with decimal 
value 12 in order to have the same 19.2K baud rate 
as the PC serial port.  
 
 
4   Conclusion 
A software and hardware ensemble were designed 
and tested towards communicating between PC and 
a CNC machine trough a microcontroller-based 
board. Emphasis was placed on the following 
communication aspects: how to develop an 
application and program a COM port using 
Microsoft newest tools, C# and .NET framework, 
how to design a PIC microcontroller circuit for 
using the build-in USART module. Schematics and 
uC programming key issues are also provided. 
 

References: 
 [1] A.H.G. Al-Dhaher, Integrating hardware and 

software for the development of microcontroller-
based system, Microprocessors and 
Microsystems, no. 25, Elsevier 2001, pp. 317-
328. 

[2] Jan Axelson, Serial Port Complete: 
Programming and Circuits for RS-232 and RS-
485 Links and Networks, Lakeview Research, 
2000. 

[3] Tom Archer, Inside C#, 2nd Edition, Microsoft 
Press, 2002. 

[4] David S. Platt, Introducing Microsoft .NET, 2nd 
Edition, Microsoft Press, 2002. 

[5] Larry O’Brien and Bruce Eckel, Thinking in C#, 
Prentice Hall, 2003. 

[6] Jesse Liberty, Programming C#, 4th Edition, 
O'Reilly, Feb. 2005. 

[7] *** .NET Framework SDK Documentation, 
Microsoft, 2006.  

[8] www.microchip.com 
[9] *** PIC16F87XA Data Sheet 28/40/44-Pin 

Enhanced Flash Microcontrollers, Microchip 
Technology Inc., 2003. 

[10] Sid Katzen, The Quintessential PIC 
Microcontroller, Springer-Verlag, 2000. 

 

Proceedings of the 11th WSEAS International Conference on COMPUTERS, Agios Nikolaos, Crete Island, Greece, July 26-28, 2007         586


