
Fix point internal hierarchy specification for context free grammars

VASILE CRĂCIUNEAN, RALF FABIAN, DANIEL HUNYADI, EMIL MARIN POPA
Department for Computer Sciences and Economic Informatics

“Lucian Blaga” University of Sibiu
Ion Raţiu Street, no. 5-7, Sibiu

ROMANIA
craciunean@sln.ro, ralf.fabian@ulbsibiu.ro, danyhunyadi@yahoo.com, emilm.popa@ulbsibiu.ro

Abstract: - In the particular case when a context free grammar is used as a model for a computation system,
each nonterminal will be naturally associated to a meaning, i.e. a type, and every generation rule represents an
operation in the computations system. Thus, the derivation tree (syntax tree) of this grammar yields a
hierarchic structure of types as well as a hierarchic structure of system operations. Consequently, on each
hierarchic level there exists a set of types and a set of operations, namely a language. Recursive specifications
are a useful tool for representing and studying this kind of language hierarchies. As we show in this paper, the
recursive specifications are a kind of constructor for these languages.

Key-Words: - computation system, fix point, recursive specification, internal hierarchy, type hierarchies

1 Introduction
With this paper we address the issue of generation
and specification methods for system design based
on recursive specifications, considering context free
grammars as the basics milestone in current modern
programming languages.

Therefore we link the properties of Kleene’s
fix point theory to internal hierarchy specifications
of context free grammars. This leads to the
possibility of specify abstraction levels for
application generation that relay on previous (older)
levels. In other words, there are unlimited
possibilities to extend the existing specifications.

We assume familiarity with basic definitions
and results of formal language theory. First we stress
out some important results from set theory, needed
in the formal modeling of recursive systems. Further
we present an algorithm that determines the types
and an algorithm for the proper hierarchy of types.
At the end we finish with a simple example showing
the immediate results of the presented theory.

2 Preliminary concepts and notions
In this paragraph we recall some basic concepts and
notions related to our further discussions.
From the set theory we now that posets (partial
ordered set: ≤ is reflexive, antisymmetric and
transitive) have the properties.
• y is an upper bound of a subset Z of a poset

(,)P ≤ iff y P∈ and, for all z Z∈ , z y≤ ;
• y is the least element (⊥) of Z iff y Z∈ and, for

all z Z∈ , y z≤ ;

• y is a maximal element of Z iff y Z∈ and there is
no z Z∈ such that z y≠ and y z≤ .

The notion of lower bound, greatest element, and
minimal element receive dual definitions (i.e.
definitions obtained by replacing “≤ ” by “≥ ”).
• y is the supremum, Z∨ , of Z iff y is an upper

bound of Z and y is the least of the upper bounds
of Z;

• y is the infimum, Z∧ , of Z iff y is a lower bound
of Z and y is the greatest of the lower bounds of
Z.

Definition 2.1. A partial ordered set (,)P ≤ is called
domain if it has one least element and if any
ascending sequence over P has an upper bound in P.
Definition 2.2. Let 1 1(,),..., (,)n nD D≤ ≤ , 0n > be
domains. Then the product domain of n domains is
a domain (,)D ≤ , where:
• 1 ... nD D D= × × and
• 1 2 1 2(, ,...,) (, ,...,)n nx x x y y y≤ iff i i ix y≤ , 1,i n= ,

1 2 1 2 1(, ,...,), (, ,...,) ...n n nx x x y y y D D∈ × × .
Definition 2.3. Let D be a domain. A recursive
specification over D is a total function : D Dψ →
such that 2 3() () () ...ψ ψ ψ⊥ ≤ ⊥ ≤ ⊥ ≤ . In this
conditions the sequence 2 3() () () ...ψ ψ ψ⊥ ≤ ⊥ ≤ ⊥ ≤
is called Kleene sequence for ψ .[1],[10]
Definition 2.4. An element f Dψ ∈ , defined by

1
()k

k
fψ ψ

∞

=
= ∨ ⊥ , (1)

is called Kleene semantic of ψ .[1]

Proceedings of the 11th WSEAS International Conference on COMPUTERS, Agios Nikolaos, Crete Island, Greece, July 26-28, 2007 247

Remark: From the domain definition, this supremum
exists.
Lemma 2.1. If (,)D ≤ is a domain and

: (,) (,)D Dψ ≤ → ≤ is monotone then ψ is a
recursive specification. (Proof: see [1].)
Definition 2.5. Let (,)P ≤ be a partial ordered set
and : P Pψ → a total function. A fixed point of ψ
is an element f P∈ that verifies ()f fψ = . The
least fix point of ψ (if it exists) is the least element
from the set of fix points. [1],[8]
Theorem 2.1. Let (,)P ≤ be a partial ordered set and

: (,) (,)P Pψ ≤ → ≤ a monotone function. If there
exists { | ()}f h h hψ= ∨ ≤ , then it is a fix point of
ψ . (Proof: see [1].)
Definition 2.6. Let (,)D ≤ and (, ')E ≤ be domains.
A monotone mapping : (,) (, ')D Eψ ≤ → ≤ is
continuous if it preserves the leases upper bounds of
the increasing sequences, namely

() (())n nf fψ ψ∨ = ∨ .[1]
An important result, on which this paper relies

on, is the following theorem, known as Kleene’s fix
point theorem.
Theorem 2.2. (Kleene’s fix point theorem) Let
(D,≤) be a domain and : (,) (,)D Dψ ≤ → ≤ a
continuous function. Then Kleen’s semantic

1
()k

k
fψ ψ

∞

=
= ∨ ⊥ is the least fix point of ψ .([1],[8])

Example 2.1. We denote (,)Pfn X Y the set of all
partial functions :f X Y→ . Then ((,),)Pfn X Y ≤ is
a domain, where the relation ≤ is defined as
follows:

() ()f g DD f DD g≤ ⇔ ⊆ and
() ()g x f x= , () ()x DD f∀ ∈ .

Thus, if 1 2jf f f≤ ≤ ≤ ≤ we define if∨ as

0
() ()i ii

DD f DD f
∞

=
∨ = ∪

()() ()i kf x f x∨ = , ()∀ k such that ()kx DD f∈ .
The function if∨ is well defined because if

() ()j kx DD f DD f∈ ∩ , then () ()j kf x f x= .
In this circumstances it can easily been seen that the
Kleene sequence 2 3() () () ...ψ ψ ψ⊥ ≤ ⊥ ≤ ⊥ ≤ is
indeed an increasing sequence in (,)Pfn X Y , and
Kleene’s semantic

•
1

() (())k

k
DD f DDψ ψ

∞

=
∨ = ∪ ⊥ ,

• () ()()kf x xψ ψ= ⊥ , ()∀ k , (())kx DD ψ∈ ⊥

satisfies the relation ()ifψ ψ= ∨ ⊥ .

Remark: The relation f g≤ shows us that g offers
at least as much information than f dose.

3 Fix point and formal languages
In this part we focus on context free grammars (type
2 grammars in Chomsky’s classification). Fist, we
show on an example, that the language generated by
a context free grammar (CFG) can be obtained from
the smallest fix point of a well chosen recursive
specification.
Example 3.1. Suppose the following simple CFG:

(, , ,)N TG V V S P= where
P= { S→A
 S→B
 A→aAb
 A→ab
 B→bBa
 B→ba
 }

{ , , }NV S A B= , { , }TV a b= and S is the grammar
axiom (starting symbol).
First we rewrite the production rules in the following
way
S→A+B
A→aAb+ab
B→bBa+ba
where “+” denotes the union.
Then we define the recursive specification:

* *3 3: (2) (2)T TV Vψ →
ψ(S, A, B)=(A+B, aAb+ab, bBa+ba)

Applying Kleene’s theorem to determine the
leases fix point for the above chosen ψ (the fact that
ψ is continues will be shown later) and computing
the Kleene sequence we have:

0 (, ,) (, ,)ψ ⊥ ⊥ ⊥ = ∅ ∅ ∅
1(, ,) (, ,) { , ,)}ab baψ ψ⊥ ⊥ ⊥ = ∅ ∅ ∅ = ∅
2 2 2(, ,) (, ,) { , ,ab ba ab ba a b abψ ψ⊥ ⊥ ⊥ = ∅ = + +

2 2 }b a ba+ .
It can be easily seen that an induction over m proofs
that () ({ |1 } { |1 },m j j j ja b j m b a j mψ ⊥ = ≤ ≤ ∪ ≤ ≤
{ |1 },{ |1 })j j j ja b j m b a j m≤ ≤ ≤ ≤
Thus, the sequence ()mψ ⊥ is truly an increasing
sequence and we have

0
() ((),{ | 1},{ | 1})m j j j j

m
L G a b j b a jψ

≥
∨ ⊥ = ≥ ≥

(here L(G) means the language generated by the
grammar G).
However, L(G) is the first component of the least fix
point of ψ . More generally speaking, for

Proceedings of the 11th WSEAS International Conference on COMPUTERS, Agios Nikolaos, Crete Island, Greece, July 26-28, 2007 248

1,2,3,...k = the k-th component of
0

()m

m
ψ

≥
∨ ⊥ is

*
*{ | }kw w X and v w∈ ⇒ , where { , , }kv S A B∈ .

A closer look on the above relations will reveal

some other information to. Let
j
⇒ denote the power

j of the relation ⇒ , i.e. '
j

w w⇒ means that w
derives (generates) 'w in j steps if there exists a
sequence 1 2, ,..., jw w w such that

1 2 1... 'j jw w w w w w−= ⇒ ⇒ ⇒ ⇒ = ;
0

'w w⇒ means
that 'w w= .
Hence, the k-th element of ()mψ ⊥ is

*{ | ', }
j

kw w X and v w for j m∈ ⇒ ≤ . (2)

The representation *{ | , }
j

kw w X and v w j m∈ ⇒ ≤ is
tricky, as the following example shows.
Example 3.2. Considering a grammar with a single
variable and the productions S→a+aSa+SbbS, then,
this implies

* *
: 2 2X Xψ → and ψ(⊥)=a+aSa+SbbS.

Thus,
0 ()ψ ⊥ =∅
1() { }aψ ⊥ =
2 () { , } { }aaa abba aψ ⊥ = ∪

But 2 ()ψ ⊥ is not acceptable since the shortest
derivation for the word abba is

1 1 1 1v v bbv abbv abba⇒ ⇒ ⇒ , which needs 3 steps
(in stead of les then 2). Anyway, looking at the
derivation tree, depict in figure 1, for the word abba,
we see that he is of height 2.

Figure 1. Derivation tree for example 3.2

In other words, if we admit parallel substitutions (all
the variables of a sequence can be replaced during a
single step), then our word is indeed derivable in
two steps: S SbbS abba⇒ ⇒ . This is a model of
the semantic of “total call” by “.”, due the fact that
all variables are replaced by each step; however this
model is nondeterministic because any production
from the set of productions can be chosen to replace
every occurrence of a variable.

4 Internal hierarchy of context free
languages
The generating grammar for a context free language
offers a internal language hierarchy. By this means,
we consider the language semantics equal to the
calculus system obtained in the following way:
• every nonterminal symbol of the grammar

represents the name of a set of elements called
type;

• every production represents a heterogeneous
operation, namely, if A Pα→ ∈ and

0 1 1 2 1... n n ns A s A s A sα += , then the heterogeneous
operation associated to this production is denoted
by 0 1 1... n ns s s s + and operates on the sets

1 2, ,..., nA A A and produces a result of type A, i.e.

0 1 1 1 2(...) : ...n n ns s s s A A A A+ × × × → .
If p A Pα= → ∈ then ()t p denotes the type of p,
()t p A= ; ()d p denotes the domain of p,

1 2() { , ,..., }nd p A A A= ; ()s p denotes the state word
(or symbol) of p, 0 1 1() ... n ns p s s s s += , and ()m p the
arity of p, ()m p n= .

Given a context free language
(, , ,)N TG V V S P= , we consider a hierarchy of

nonterminal symbols build as follows:
0 *{ | , }N N TV A V A P Vα α= ∈ → ∈ ∈ (3)

1
0 1 1 2 1

1 2

{ | ...

, ,..., }

i i
N N N n n n

i
n N

V V A V A s A s A s A s P

and A A A V

+
+= ∪ ∈ → ∈

∈
(4)

The next algorithm determines the types
hierarchy for a context free grammar

(, , ,)N TG V V S P= .
Algorithm 4.1.
Input: A CFG (, , ,)N TG V V S P= .
Output: The set of types j

NV .
Method: consists in building a sequence of sets
{ | }i

NV i∈ that comply with the property
0 1 1... ...k k

N N N NV V V V−⊂ ⊂ ⊂ = = . Thus, k
NV will

contain all the nonterminal symbols that can
generate words over *

TV . Obviously, if k
NS V∉ the

language is equal to the empty set.
00 START
01 : 0i =
02 0 *{ | , }N N TV A V A P Vα α= ∈ → ∈ ∈
03 DO UNTIL (1i i

N NV V −=)

04

1

0 1 1 2 1

1 2

{ |
...

, ,..., }

i i
N N N

n n n
i

n N

V V A V
A s A s A s A s P

and A A A V

+

+

= ∪ ∈

→ ∈

∈

S

S S b b

a a

Proceedings of the 11th WSEAS International Conference on COMPUTERS, Agios Nikolaos, Crete Island, Greece, July 26-28, 2007 249

05 : 1i i= +
06 ENDDO
07 STOP

Property 4.1. For any given context free grammar

(, , ,)N TG V V S P= , there exists a finite number k of
hierarchic type levels. (The complete proof can be
found in [3])
Example 4.1. We consider now as example, a
classic CFG, namely the grammar that generates
arithmetic expressions:

(, , ,)N TG V V S P= , where
VN={E, T, F};
VT={a,*,+,(,)};
S=E;
P={F→a, T→F,T→T*F, E→T, E→E+T, F→(E)}
We obtain the following inner hierarchy of types:
V 0

N ={F}
V 1

N ={F, T}
V 2

N ={F, T, E}
V 3

N ={F, T, E}
Building an inner hierarchy of productions leads us
to:

1 0{ | () () }NP p P d p and t p V= ∈ =∅ ⊆ ,
1 1{ | () () }i i i i

N NP P p P d p V and t p V+ −= ∪ ∈ ⊆ ⊆
For a given context free grammar (, , ,)N TG V V S P= ,
the following algorithm determines the
corresponding hierarchy of types.
Algorithm 4.2.
Input: A context free grammar (, , ,)N TG V V S P= .
Output: The set of productions iP .
Method: consists of building a sequence of sets
{ | }iP i∈ with the property

1 2 1... ...k kP P P P−⊂ ⊂ ⊂ = = The set kP will
contain all useful productions of the grammar G.
00 START
01 : 0i =
02 1 0{ | () () }NP p P d p and t p V= ∈ =∅ ⊆
03 DO UNTIL (1i iP P −=)

04
1 1{ | ()

() }

i i i
N

i
N

P P p P d p V

and t p V

+ −= ∪ ∈ ⊆

⊆

05 : 1i i= +
06 ENDDO
07 STOP

Property 4.2. For any given context free grammar

(, , ,)N TG V V S P= there exist a finite number, k, of
production levels. (For the complete proof see [3].)

In building the type hierarchy we use an
appropriate recursive specification for every
hierarchic level. Every 1 2{ , ,..., }i

N i i irV v v v= has the
recursive specification:

* *
: (2) (2)T TV Vr r

iψ → ,

1 2 1 2(, ,...,) ([],[],...,[])i i i ir i i irv v v v v vψ = , where

0 1 1 2 1[] { ... |ij n n nv s A s A s A s p A P andα α+= ∑ = = → ∈

() }ijd p v= .

Example 4.2. For the context free grammar of
arithmetic expressions, form example 4.1, we have
the following production hierarchy:
P1={F→a};
P2={F→a, T→F};
P3={F→a, T→F, T→T*F, E→T};
P4=P.
and the corresponding recursive specifications are:

* *

1 : (2) (2)T TV Vψ → , ψ1(F)=(a);
* *2 2

2 : (2) (2)T TV Vψ → , ψ2(F, T)=(a, F);
* *3 3

3 : (2) (2)T TV Vψ → , ψ3(F, T, E)=(a, F⊕ T*F, T);
* *3 3

4 : (2) (2)T TV Vψ → , ψ4(F, T, E)=(a⊕ (E), F⊕T*F,
T⊕E+T).
The fix points of this specifications yield the
appropriate types:

1() ()aψ ⊥ = ;
2
1 () ()aψ ⊥ = ;

...

1 () ()n aψ ⊥ = ;
Thus

1
()f aψ = , i.e. 11 { }v a= .

2 (,) (,)aψ ⊥ ⊥ = ⊥ ;
2
2 2() (,) (,)a a aψ ψ⊥ = ⊥ = ;

...

2 () (,)n a aψ ⊥ = ;
...
Thus

2
(,)f a aψ = , i.e. 11 { }v a= , 12 { }v a= .

3 (, ,) (, ,)aψ ⊥ ⊥ ⊥ = ⊥ ⊥ ;
2 1
3 3(, ,) (, ,) (, ,)a a aψ ψ⊥ ⊥ ⊥ = ⊥ ⊥ = ⊥ ;
3 1
3 3(, ,) (, ,) (,{ , * },)a a a a a a aψ ψ⊥ ⊥ ⊥ = ⊥ = ;
4 1
3 3(, ,) (,{ , * },) (,{ , * , * * },a a a a a a a a a a a aψ ψ⊥ ⊥ ⊥ = =

{ , * })a a a ;
...

3
1

() (,{ , * , * * ,..., * * *...* },n

n times

a a a a a a a a a a aψ
−

⊥ =

2

{ , * , * * ,..., * * *...* })
n times

a a a a a a a a a a
−

Proceedings of the 11th WSEAS International Conference on COMPUTERS, Agios Nikolaos, Crete Island, Greece, July 26-28, 2007 250

Therefore
3

(,{ | },{ | })i if a a i a iψ = ∈ ∈ and

11 { }v a= , 12 { | }iv a i= ∈ , 13 { | }iv a i= ∈ , where
* *...*i

i times

a a a a= .

4 (, ,) (, ,)aψ ⊥ ⊥ ⊥ = ⊥ ⊥ ;
2 1
4 4(, ,) (, ,) (, ,)a a aψ ψ⊥ ⊥ ⊥ = ⊥ ⊥ = ⊥ ;
3 1
4 4(, ,) (, ,) (,{ , * },)a a a a a a aψ ψ⊥ ⊥ ⊥ = ⊥ = ;
4 1
4 4(, ,) (,{ , * },) ({ ,()},

{ , * , * * },
{ , * , , * })

a a a a a a a
a a a a a a
a a a a a a a a

ψ ψ⊥ ⊥ ⊥ = =

+ +

5 1
4 4(, ,)ψ ψ⊥ ⊥ ⊥ = ({a, (a)},{a, a*a, a*a*a}, {a, a*a,

a+a, a*a+a})= ({a, (a), (a*a), (a+a),
 (a*a+a)}, {a, (a), a*a, a*a*a,
a*a*a*a, a*(a), a*a(a), a*a*a*(a)},
{a, a*a, a*a*a, a+a, a*a+a, a+a+a,
a*a+a+a, a+a*a, a*a+a*a,
a+a+a*a, a*a+a+a*a, a+a*a*a,
a*a+a*a*a, a+a+a*a*a,
a*a+a+a*a*a});

...
Generally,

1
fψ builds the set of base primary types of

language L(G) and represents the generating level or
the lexicon of language L(G), in other words, the
lexical level of language L(G).

5 Conclusions and future works
 In general, concrete computational structures
are composed of a family of object sets, a number of
(partial determined operations) on these objects and
a series of properties of these operations. Hence, a
computational structure is an algebraic structure.
 Since complex applications will require the
possibility to reason about relational algebras build
from other relational algebras via certain
construction principles, it becomes necessarily to
allow reasoning not only within single relation
algebra but also about several structures and the
connections between them.
 Recursive specifications emphasize
language construction from simple levels to complex
ones. Even if we pointed out the internal hierarchy
of a given grammar, this in turn can be extended
unlimitedly, by adding, to new types and operations
build upon the already defined levels.
 The here presented ideas are part of our
research on formal methods for programming
language and on of the main research directions of
our local Research Centre. Various connotations and
practical aspects will be part of further scientific
papers. As main purpose, we are currently intending

to apply this method in systems for application
generation based on multi layer specification. We
will monitor with great interest the evolution of the
system, over the time, to see if the unlimited
extensibility is a reliable long run solution.

References:
[1] Ernest G. Manes, Michael A. Arbib, Algebraic

Approaches to program semantics – Springer
Verlag, New York, Berlin, Heidelberg, London,
Paris, Tokyo, 1986.

[2] Alfred V. Aho, Ravi Sethi, Jeffrey D. Ullman,
Compilers: Principles, Techniques, and Tools,
Addison Wesley, 2001.

[3] Teodor Rus, Mecanisme formale pentru
specificarea limbajelor, Ed. Academie Române,
Bucureşti, 1983.

[4] Crăciunean V., Translatoare şi compilatoare,
Ed. Alma Mater, Sibiu, 2002.

[5] Emil M. Popa, Modele formale computationale,
Editura „Alma Mater”, Sibiu, 2000

[6] Emil M. Popa, Limbaje formale. Fundamentele
limbajelor de programare, Editura „Alma
Mater”, Sibiu, 2003

[7] Emil M. Popa, Programare genetica si
evolutiva, Editura „Alma Mater”, Sibiu, 2003

[8] Emil M. Popa, Formal Syntax and Semantics of
Programming Language, Editura „Alma
Mater”, Sibiu, 2004

[9] Ralf Fabian, Limbaje formale, Teorie,
Exemple, Probleme, Editura Univeristăţii
„Lucian Blaga” Sibiu, 2006.

[10] Creangă, C. Reischer, D. Simovici, Introducere
algebrică în informatică – Limbaje formale, Ed.
Junimea, Iaşi, 1974.

[11] Creangă, C. Reischer, D. Simovici, Introducere
algebrică în informatică – Teorie automatelor,
Ed. Junimea, Iaşi, 1973.

[12] Toader Jucan, Limbaje formale şi automate, Ed.
MatrixRom, 1999.

[13] Gabriel V. Orman, Limbaje formale şi
acceptori, Ed. Albastră, Cluj-Napoca, 2002.

[14] Luca Dan Şerbănaţi, Limbaje de programare şi
compilatoare, Ed. Academiei Române,
Bucureşti, 1987.

[15] Jürgen Dassow, Gheorghe Păun, Regulated
Rewriting in Formal Language Theory,
Akademie Verlag Berlin, 1989

[16] Gh. Păun, Gramatici contextuale, Bucureşti,
1982

[17] Gh. Păun, Mecanisme generative ale proceselor
economice, Ed Tehnică, Bucureşti, 1988.

Proceedings of the 11th WSEAS International Conference on COMPUTERS, Agios Nikolaos, Crete Island, Greece, July 26-28, 2007 251

