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Abstract: - In the particular case when a context free grammar is used as a model for a computation system, 
each nonterminal will be naturally associated to a meaning, i.e. a type, and every generation rule represents an 
operation in the computations system. Thus, the derivation tree (syntax tree) of this grammar yields a 
hierarchic structure of types as well as a hierarchic structure of system operations. Consequently, on each 
hierarchic level there exists a set of types and a set of operations, namely a language. Recursive specifications 
are a useful tool for representing and studying this kind of language hierarchies. As we show in this paper, the 
recursive specifications are a kind of constructor for these languages. 
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1   Introduction 
With this paper we address the issue of generation 
and specification methods for system design based 
on recursive specifications, considering context free 
grammars as the basics milestone in current modern 
programming languages. 

Therefore we link the properties of Kleene’s 
fix point theory to internal hierarchy specifications 
of context free grammars. This leads to the 
possibility of specify abstraction levels for 
application generation that relay on previous (older) 
levels. In other words, there are unlimited 
possibilities to extend the existing specifications. 

We assume familiarity with basic definitions 
and results of formal language theory. First we stress 
out some important results from set theory, needed 
in the formal modeling of recursive systems. Further 
we present an algorithm that determines the types 
and an algorithm for the proper hierarchy of types. 
At the end we finish with a simple example showing 
the immediate results of the presented theory. 
 
2   Preliminary concepts and notions 
In this paragraph we recall some basic concepts and 
notions related to our further discussions. 
From the set theory we now that posets (partial 
ordered set: ≤  is reflexive, antisymmetric and 
transitive) have the properties.  
• y is an upper bound of a subset Z of a poset 

( , )P ≤  iff y P∈  and, for all z Z∈ , z y≤ ; 
• y is the least element (⊥ ) of Z iff y Z∈  and, for 

all z Z∈ , y z≤ ; 

• y is a maximal element of Z iff y Z∈  and there is 
no z Z∈  such that z y≠  and y z≤ . 

The notion of lower bound, greatest element, and 
minimal element receive dual definitions (i.e. 
definitions obtained by replacing “≤ ” by “≥ ”).  
• y is the supremum, Z∨ , of Z iff y is an upper 

bound of Z and y is the least of the upper bounds 
of Z; 

• y is the infimum, Z∧ , of Z iff y is a lower bound 
of Z and y is the greatest of the lower bounds of 
Z. 

Definition 2.1. A partial ordered set ( , )P ≤  is called 
domain if it has one least element and if any 
ascending sequence over P has an upper bound in P. 
Definition 2.2. Let 1 1( , ),..., ( , )n nD D≤ ≤ , 0n >  be 
domains. Then the product domain of n domains is 
a domain ( , )D ≤ , where: 
• 1 ... nD D D= × ×  and 
• 1 2 1 2( , ,..., ) ( , ,..., )n nx x x y y y≤  iff  i i ix y≤ , 1,i n= , 

1 2 1 2 1( , ,..., ), ( , ,..., ) ...n n nx x x y y y D D∈ × × . 
Definition 2.3. Let D be a domain. A recursive 
specification over D is a total function : D Dψ →  
such that 2 3( ) ( ) ( ) ...ψ ψ ψ⊥ ≤ ⊥ ≤ ⊥ ≤ . In this 
conditions the sequence 2 3( ) ( ) ( ) ...ψ ψ ψ⊥ ≤ ⊥ ≤ ⊥ ≤  
is called Kleene sequence for ψ .[1],[10] 
Definition 2.4. An element f Dψ ∈ , defined by  

1
( )k

k
fψ ψ

∞

=
= ∨ ⊥ ,     (1) 

is called Kleene semantic of ψ .[1] 
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Remark: From the domain definition, this supremum 
exists. 
Lemma 2.1. If ( , )D ≤  is a domain and 

: ( , ) ( , )D Dψ ≤ → ≤  is monotone then ψ  is a 
recursive specification. (Proof: see [1].) 
Definition 2.5. Let ( , )P ≤  be a partial ordered set 
and : P Pψ →  a total function. A fixed point of ψ  
is an element f P∈  that verifies ( )f fψ = .  The 
least fix point of ψ  (if it exists) is the least element 
from the set of fix points. [1],[8]  
Theorem 2.1. Let ( , )P ≤  be a partial ordered set and 

: ( , ) ( , )P Pψ ≤ → ≤  a monotone function. If there 
exists { | ( )}f h h hψ= ∨ ≤ , then it is a fix point of 
ψ . (Proof: see [1].) 
Definition 2.6. Let ( , )D ≤  and ( , ')E ≤  be domains. 
A monotone mapping : ( , ) ( , ')D Eψ ≤ → ≤  is 
continuous if it preserves the leases upper bounds of 
the increasing sequences, namely 

( ) ( ( ))n nf fψ ψ∨ = ∨ .[1] 
An important result, on which this paper relies 

on, is the following theorem, known as Kleene’s fix 
point theorem. 
Theorem 2.2. (Kleene’s fix point theorem) Let 
(D,≤) be a domain and : ( , ) ( , )D Dψ ≤ → ≤  a 
continuous function. Then Kleen’s semantic 

1
( )k

k
fψ ψ

∞

=
= ∨ ⊥  is the least fix point of ψ .([1],[8]) 

Example 2.1. We denote ( , )Pfn X Y  the set of all 
partial functions :f X Y→ . Then ( ( , ), )Pfn X Y ≤  is 
a domain, where the relation ≤  is defined as 
follows: 

( ) ( )f g DD f DD g≤ ⇔ ⊆  and 
( ) ( )g x f x= , ( ) ( )x DD f∀ ∈ . 

Thus, if 1 2 ... ...jf f f≤ ≤ ≤ ≤  we define if∨  as 

0
( ) ( )i ii

DD f DD f
∞

=
∨ = ∪  

( )( ) ( )i kf x f x∨ = , ( )∀  k such that ( )kx DD f∈ . 
The function if∨  is well defined because if 

( ) ( )j kx DD f DD f∈ ∩ , then ( ) ( )j kf x f x= . 
In this circumstances it can easily been seen that the 
Kleene sequence 2 3( ) ( ) ( ) ...ψ ψ ψ⊥ ≤ ⊥ ≤ ⊥ ≤  is 
indeed an increasing sequence in ( , )Pfn X Y , and 
Kleene’s semantic 

• 
1

( ) ( ( ))k

k
DD f DDψ ψ

∞

=
∨ = ∪ ⊥ , 

• ( ) ( )( )kf x xψ ψ= ⊥ , ( )∀  k , ( ( ))kx DD ψ∈ ⊥  

satisfies the relation ( )ifψ ψ= ∨ ⊥ . 

Remark: The relation f g≤  shows us that g offers 
at least as much information than f dose. 
 
3   Fix point and formal languages 
In this part we focus on context free grammars (type 
2 grammars in Chomsky’s classification). Fist, we 
show on an example, that the language generated by 
a context free grammar (CFG) can be obtained from 
the smallest fix point of a well chosen recursive 
specification. 
Example 3.1. Suppose the following simple CFG: 

( , , , )N TG V V S P=  where 
P= { S→A 
 S→B 
 A→aAb 
 A→ab 
 B→bBa 
 B→ba 
       } 

{ , , }NV S A B= , { , }TV a b=  and S is the grammar 
axiom (starting symbol). 
First we rewrite the production rules in the following 
way 
S→A+B 
A→aAb+ab 
B→bBa+ba 
where “+” denotes the union. 
Then we define the recursive specification: 

* *3 3: (2 ) (2 )T TV Vψ →  
ψ(S, A, B)=(A+B, aAb+ab, bBa+ba) 

Applying Kleene’s theorem to determine the 
leases fix point for the above chosen ψ  (the fact that 
ψ  is continues will be shown later) and computing 
the Kleene sequence we have: 

0 ( , , ) ( , , )ψ ⊥ ⊥ ⊥ = ∅ ∅ ∅  
1( , , ) ( , , ) { , , )}ab baψ ψ⊥ ⊥ ⊥ = ∅ ∅ ∅ = ∅  
2 2 2( , , ) ( , , ) { , ,ab ba ab ba a b abψ ψ⊥ ⊥ ⊥ = ∅ = + +  

2 2 }b a ba+ . 
It can be easily seen that an induction over m proofs 
that ( ) ({ |1 } { |1 },m j j j ja b j m b a j mψ ⊥ = ≤ ≤ ∪ ≤ ≤  
{ |1 },{ |1 })j j j ja b j m b a j m≤ ≤ ≤ ≤  
Thus, the sequence ( )mψ ⊥  is truly an increasing 
sequence and we have 

0
( ) ( ( ),{ | 1},{ | 1})m j j j j

m
L G a b j b a jψ

≥
∨ ⊥ = ≥ ≥  

(here L(G) means the language generated by the 
grammar G). 
However, L(G) is the first component of the least fix 
point of ψ . More generally speaking, for 
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1,2,3,...k =  the k-th component of 
0

( )m

m
ψ

≥
∨ ⊥  is 

*
*{ | }kw w X and v w∈ ⇒ , where { , , }kv S A B∈ . 

 
A closer look on the above relations will reveal 

some other information to. Let 
j
⇒  denote the power 

j of the relation ⇒ , i.e. '
j

w w⇒  means that w 
derives (generates) 'w  in j steps if there exists a 
sequence 1 2, ,..., jw w w  such that  

1 2 1... 'j jw w w w w w−= ⇒ ⇒ ⇒ ⇒ = ;
0

'w w⇒  means 
that 'w w= . 
Hence, the k-th element of ( )mψ ⊥  is 

*{ | ', }
j

kw w X and v w for j m∈ ⇒ ≤ .  (2) 

The representation *{ | , }
j

kw w X and v w j m∈ ⇒ ≤  is 
tricky, as the following example shows. 
Example 3.2. Considering a grammar with a single 
variable and the productions S→a+aSa+SbbS, then, 
this implies  

* *
: 2 2X Xψ →  and ψ(⊥)=a+aSa+SbbS. 

Thus, 
0 ( )ψ ⊥ =∅  
1( ) { }aψ ⊥ =  
2 ( ) { , } { }aaa abba aψ ⊥ = ∪  

But 2 ( )ψ ⊥  is not acceptable since the shortest 
derivation for the word abba is 

1 1 1 1v v bbv abbv abba⇒ ⇒ ⇒ , which needs 3 steps 
(in stead of les then 2). Anyway, looking at the 
derivation tree, depict in figure 1, for the word abba, 
we see that he is of height 2. 

 
Figure 1. Derivation tree for example 3.2 

 
In other words, if we admit parallel substitutions (all 
the variables of a sequence can be replaced during a 
single step), then our word is indeed derivable in 
two steps: S SbbS abba⇒ ⇒ . This is a model of 
the semantic of “total call” by “.”, due the fact that 
all variables are replaced by each step; however this 
model is nondeterministic because any production 
from the set of productions can be chosen to replace 
every occurrence of a variable. 
 

4   Internal hierarchy of context free 
languages 
The generating grammar for a context free language 
offers a internal language hierarchy. By this means, 
we consider the language semantics equal to the 
calculus system obtained in the following way: 
• every nonterminal symbol of the grammar 

represents the name of a set of elements called 
type; 

• every production represents a heterogeneous 
operation, namely, if A Pα→ ∈  and 

0 1 1 2 1... n n ns A s A s A sα += , then the heterogeneous 
operation associated to this production is denoted 
by 0 1 1... n ns s s s +  and operates on the sets 

1 2, ,..., nA A A  and produces a result of type A, i.e. 

0 1 1 1 2( ... ) : ...n n ns s s s A A A A+ × × × → . 
If p A Pα= → ∈  then ( )t p  denotes the type of p, 
( )t p A= ; ( )d p  denotes the domain of p, 

1 2( ) { , ,..., }nd p A A A= ; ( )s p  denotes the state word 
(or symbol) of p, 0 1 1( ) ... n ns p s s s s += , and ( )m p  the 
arity of p, ( )m p n= . 

Given a context free language 
( , , , )N TG V V S P= , we consider a hierarchy of 

nonterminal symbols build as follows: 
0 *{ | , }N N TV A V A P Vα α= ∈ → ∈ ∈    (3) 

1
0 1 1 2 1

1 2

{ | ...

, ,..., }

i i
N N N n n n

i
n N

V V A V A s A s A s A s P

and A A A V

+
+= ∪ ∈ → ∈

∈
(4) 

The next algorithm determines the types 
hierarchy for a context free grammar 

( , , , )N TG V V S P= . 
Algorithm 4.1. 
Input: A CFG ( , , , )N TG V V S P= . 
Output: The set of types j

NV . 
Method: consists in building a sequence of sets 
{ | }i

NV i∈ that comply with the property 
0 1 1... ...k k

N N N NV V V V−⊂ ⊂ ⊂ = = . Thus, k
NV  will 

contain all the nonterminal symbols that can 
generate words over *

TV . Obviously, if k
NS V∉  the 

language is equal to the empty set. 
00  START 
01  : 0i =  
02  0 *{ | , }N N TV A V A P Vα α= ∈ → ∈ ∈  
03   DO UNTIL ( 1i i

N NV V −= ) 

04 

1

0 1 1 2 1

1 2

{ |
...

, ,..., }

i i
N N N

n n n
i

n N

V V A V
A s A s A s A s P

and A A A V

+

+

= ∪ ∈

→ ∈

∈

 

S 

S S b b 

a a 
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05   : 1i i= +  
06   ENDDO 
07  STOP 
 
Property 4.1. For any given context free grammar 

( , , , )N TG V V S P= , there exists a finite number k of 
hierarchic type levels. (The complete proof can be 
found in [3]) 
Example 4.1. We consider now as example, a 
classic CFG, namely the grammar that generates 
arithmetic expressions: 

( , , , )N TG V V S P= , where 
VN={E, T, F}; 
VT={a,*,+,(,)}; 
S=E; 
P={F→a, T→F,T→T*F, E→T, E→E+T, F→(E)} 
We obtain the following inner hierarchy of types: 
V 0

N ={F} 
V 1

N ={F, T} 
V 2

N ={F, T, E} 
V 3

N ={F, T, E} 
Building an inner hierarchy of productions leads us 
to: 

1 0{ | ( ) ( ) }NP p P d p and t p V= ∈ =∅ ⊆ , 
1 1{ | ( ) ( ) }i i i i

N NP P p P d p V and t p V+ −= ∪ ∈ ⊆ ⊆  
For a given context free grammar ( , , , )N TG V V S P= , 
the following algorithm determines the 
corresponding hierarchy of types. 
Algorithm 4.2. 
Input: A context free grammar ( , , , )N TG V V S P= . 
Output: The set of productions iP . 
Method: consists of building a sequence of  sets 
{ | }iP i∈  with the property 

1 2 1... ...k kP P P P−⊂ ⊂ ⊂ = =  The set kP  will 
contain all useful productions of the grammar G. 
00  START 
01  : 0i =  
02  1 0{ | ( ) ( ) }NP p P d p and t p V= ∈ =∅ ⊆  
03   DO UNTIL ( 1i iP P −= ) 

04    
1 1{ | ( )

( ) }

i i i
N

i
N

P P p P d p V

and t p V

+ −= ∪ ∈ ⊆

⊆
 

05    : 1i i= +  
06   ENDDO 
07  STOP 
 
Property 4.2. For any given context free grammar 

( , , , )N TG V V S P=  there exist a finite number, k, of 
production levels. (For the complete proof see [3].) 

In building the type hierarchy we use an 
appropriate recursive specification for every 
hierarchic level. Every 1 2{ , ,..., }i

N i i irV v v v=  has the 
recursive specification: 

* *
: (2 ) (2 )T TV Vr r

iψ → , 

1 2 1 2( , ,..., ) ([ ],[ ],...,[ ])i i i ir i i irv v v v v vψ = , where 

0 1 1 2 1[ ] { ... |ij n n nv s A s A s A s p A P andα α+= ∑ = = → ∈

( ) }ijd p v= . 
 
Example 4.2. For the context free grammar of 
arithmetic expressions, form example 4.1, we have 
the following production hierarchy: 
P1={F→a}; 
P2={F→a, T→F}; 
P3={F→a, T→F, T→T*F, E→T}; 
P4=P. 
and the corresponding recursive specifications are: 

* *

1 : (2 ) (2 )T TV Vψ → ,  ψ1(F)=(a); 
* *2 2

2 : (2 ) (2 )T TV Vψ → , ψ2(F, T)=(a, F); 
* *3 3

3 : (2 ) (2 )T TV Vψ → , ψ3(F, T, E)=(a, F⊕ T*F, T); 
* *3 3

4 : (2 ) (2 )T TV Vψ → , ψ4(F, T, E)=(a⊕  (E), F⊕T*F, 
T⊕E+T). 
The fix points of this specifications yield the 
appropriate types:  

1( ) ( )aψ ⊥ = ; 
2
1 ( ) ( )aψ ⊥ = ; 

... 

1 ( ) ( )n aψ ⊥ = ; 
Thus 

1
( )f aψ = , i.e. 11 { }v a= . 

2 ( , ) ( , )aψ ⊥ ⊥ = ⊥ ; 
2
2 2( ) ( , ) ( , )a a aψ ψ⊥ = ⊥ = ; 

... 

2 ( ) ( , )n a aψ ⊥ = ; 
... 
Thus 

2
( , )f a aψ = , i.e. 11 { }v a= , 12 { }v a= . 

3 ( , , ) ( , , )aψ ⊥ ⊥ ⊥ = ⊥ ⊥ ; 
2 1
3 3( , , ) ( , , ) ( , , )a a aψ ψ⊥ ⊥ ⊥ = ⊥ ⊥ = ⊥ ; 
3 1
3 3( , , ) ( , , ) ( ,{ , * }, )a a a a a a aψ ψ⊥ ⊥ ⊥ = ⊥ = ; 
4 1
3 3( , , ) ( ,{ , * }, ) ( ,{ , * , * * },a a a a a a a a a a a aψ ψ⊥ ⊥ ⊥ = =

{ , * })a a a ; 
... 

3
1

( ) ( ,{ , * , * * ,..., * * *...* },n

n times

a a a a a a a a a a aψ
−

⊥ =

2

{ , * , * * ,..., * * *...* })
n times

a a a a a a a a a a
−
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Therefore 
3

( ,{ | },{ | })i if a a i a iψ = ∈ ∈  and 

11 { }v a= , 12 { | }iv a i= ∈ , 13 { | }iv a i= ∈ , where 
* *...*i

i times

a a a a= .   

4 ( , , ) ( , , )aψ ⊥ ⊥ ⊥ = ⊥ ⊥ ; 
2 1
4 4( , , ) ( , , ) ( , , )a a aψ ψ⊥ ⊥ ⊥ = ⊥ ⊥ = ⊥ ; 
3 1
4 4( , , ) ( , , ) ( ,{ , * }, )a a a a a a aψ ψ⊥ ⊥ ⊥ = ⊥ = ; 
4 1
4 4( , , ) ( ,{ , * }, ) ({ ,( )},

{ , * , * * },
{ , * , , * })

a a a a a a a
a a a a a a
a a a a a a a a

ψ ψ⊥ ⊥ ⊥ = =

+ +
 

5 1
4 4( , , )ψ ψ⊥ ⊥ ⊥ = ({a, (a)},{a, a*a, a*a*a}, {a, a*a,  

a+a, a*a+a})= ({a, (a), (a*a), (a+a),  
 (a*a+a)}, {a, (a), a*a, a*a*a,  
a*a*a*a, a*(a), a*a(a), a*a*a*(a)},  
{a, a*a, a*a*a, a+a, a*a+a, a+a+a,  
a*a+a+a, a+a*a, a*a+a*a,  
a+a+a*a, a*a+a+a*a, a+a*a*a,  
a*a+a*a*a, a+a+a*a*a,  
a*a+a+a*a*a}); 

... 
Generally, 

1
fψ builds the set of base primary types of 

language L(G) and represents the generating level or 
the lexicon of language L(G), in other words, the 
lexical level of language L(G). 
 
5   Conclusions and future works 
 In general, concrete computational structures 
are composed of a family of object sets, a number of 
(partial determined operations) on these objects and 
a series of properties of these operations. Hence, a 
computational structure is an algebraic structure. 
 Since complex applications will require the 
possibility to reason about relational algebras build 
from other relational algebras via certain 
construction principles, it becomes necessarily to 
allow reasoning not only within single relation 
algebra but also about several structures and the 
connections between them. 
 Recursive specifications emphasize 
language construction from simple levels to complex 
ones. Even if we pointed out the internal hierarchy 
of a given grammar, this in turn can be extended 
unlimitedly, by adding, to new types and operations 
build upon the already defined levels. 
 The here presented ideas are part of our 
research on formal methods for programming 
language and on of the main research directions of 
our local Research Centre. Various connotations and 
practical aspects will be part of further scientific 
papers. As main purpose, we are currently intending 

to apply this method in systems for application 
generation based on multi layer specification. We 
will monitor with great interest the evolution of the 
system, over the time, to see if the unlimited 
extensibility is a reliable long run solution. 
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