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Abstract: This paper presents a new voice activity detection (VAD) method using the Laplacian distribution and a uniformly
most powerful (UMP) test. The UMP test is employed to derive the new decision rule based on likelihood ratio test (LRT).
The proposed method provide the decision rule by comparing the sum of magnitude of real and imaginary parts of the noisy
spectral component to the adaptive threshold estimated from the noise statistics. Experimental results show that the proposed
VAD algorithm based on the Laplacian and the UMP test outperforms the conventional scheme at a low SNR.
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1 Introduction

Voice activity detection (VAD) refers to the classical prob-
lem of distinguishing active speech from nonspeech and
has various applications such as speech coding, speech
enhancement, and echo cancelation. Recently, many sta-
tistical model-based VAD algorithms in which the likeli-
hood ratio test (LRT) is applied to a set of hypotheses have
been developed [1]-[4]. These methods adopt the statisti-
cal models which operate in the discrete Fourier transform
(DFT) domain. Usually the distributions of noisy speech
and noise spectra are assumed to be complex Gaussians [1].
Chang et. al., utilized the complex Laplacian and Gamma
probability density functions (pdfs) to model the distribu-
tions of noisy speech and noise spectra, and showed that
VAD based on these distributions was better than that based
on the complex Gaussian distribution [2], [3]. Recently
we proposed a new VAD technique based on the Gaussian
and a uniformly most powerful (UMP) test which compares
the magnitude of the noisy speech spectral to the threshold
which depends only on the noise statistics and the false-
alarm probability to detect the speech or nonspeech [4].

In this paper, we further extend the ideas of the previ-
ous UMP technique [4] by incorporating the Laplacian pdf
instead of the Gaussian. We apply the UMP test to derive
the new decision rule which requires the distribution for the
sum of magnitude of real and imaginary parts of the noisy
speech spectral. The proposed method depends only on the
magnitude of real and imaginary parts of the noisy spectral
component and the threshold based on the estimated noise
statistics, which is computationally efficient in its imple-
mentation. Experimental results indicate that the proposed
VAD algorithm based on the Laplacian and the UMP test
shows better results compared with the conventional algo-
rithms at a low SNR.

2 Likelihood Ratio Test for VAD
We assume that a noise � is added to a speech signal �,
with their sum being denoted by �. Given two hypotheses
�� and ��, which, respectively, indicate speech absence
and presence, it is assumed that

��: speech absent : ���� � ���� (1)

��: speech present : ���� � ���� � ����

in which, ���� � ������� ������ � � � � ��������
� ,

	��� � �	����� 	����� � � � � 	�������
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� �
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����� � � � � 
�������
� are the DFT coefficients

at frame � of the noisy speech, noise, and clean speech,
respectively. Also, � is total number of frequency bins,
and � is transposed matrix.

We consider the statistical model-based VAD using the
Laplacian pdf for speech signal [2], [3]. The real and imag-
inary parts of each DFT coefficients are assumed to be dis-
tributed according to a real Laplacian pdf. Let ����� and
����� denote the real and imaginary parts, respectively, of
the DFT coefficient��. If both the real and imaginary parts
have the same variance, their distributions are given by
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where �� is the variances of ��. If the real and imaginary
parts of �� are further assumed to be independent, the dis-
tribution 
���� of �� turns out to be
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From (5), the distribution of the DFT coefficients under the
respective hypotheses are given by
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where �	�� and ����denote the variances of 
� and 	�,
respectively.

For VAD based on the assumed statistical models, the
likelihood ratio (LR) for the �th frequency is given by
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where 
�� � ������� � ������� and �� � �	�������, and
�� is called the a priori SNR [5]. The decision rule is con-
structed as the geometric mean of the LRs computed for the
individual frequency bins such that
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with � denoting the threshold of detection.

3 Likelihood Ratio Test Based on
UMP Test

3.1 VAD Based on UMP Test

In this section, we present a new statistical model-based
VAD method for the Laplacian pdf using the UMP test. To
find the new decision rule, the decision statistic in (9) can
be rewritten as
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where the value of �	�� is unknown parameter, although
a priori we know that �	�� � �. We assume that the noise
variance, ���� is known, which can be estimated during pe-
riods of nonspeech activity [5]. Then, the LRT is to decide
�� if
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Since it is known that �	�� � � and ���� � �, after taking
the logarithm and some manipulation, we have finally the
new decision rule as follows:
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Clearly, rather than comparing a test statistic like the
LR to a threshold, the presented VAD method compares
the sum of magnitude of real and imaginary parts of the
noisy spectral component to a threshold ��. But the key
question is whether we can implement this detector with-
out the estimate of the value of �	��. The 
�� does not
depend on �	�� but it appears that the threshold �� does.
If 
�� is large, then the speech signal is probably present.
But to prevent the noise from causing the large 
��, we
have to adjust the threshold �� to control the probability
of false alarm (FA), �
�, with larger threshold values re-
ducing �
�. Over all possible detectors that have a given
�
�, this detector is optimal in that it yields the highest
detection probability, ��, for any value of �	�� , as long as
�	�� � �, This type of test, when it exists, is called a UMP
test [6]. But the UMP test is not adopted in the case of
�� � �	�� � �, which means that two-sided problems
never produce the UMP tests. For the UMP test to exist, the
parameter test must be one-sided test [6]. After finding the
threshold based on the �
�, the decision rule is established
from the arithmetic mean of the magnitude and threshold of
�th frequency bins, respectively, which is given by
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In order to determine the detection performance, the
distribution for the 
�� of the noisy spectral component
should be found. The distribution of 
�� for �th frequency
bin can be derived as follows :
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where�� 
��� denotes the unit-step function. With this pdf,
the distributions of the noisy spectral components condi-
tioned on �� and �� are given by
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The key problem now becomes one of determining the op-
timal threshold in some best manner. Specifically, we de-
scribe how to find the threshold below.
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3.2 Decision of Threshold

Since the threshold in (14) depends on the variances � 	��
and ����, it is very important to control the threshold ac-
cording to the noise statistics to improve the detection per-
formance. To find the threshold, we can use the false-alarm
probability, �
�, [6]. A false alarm is realized when the
sum of magnitude of real and imaginary parts of the spec-
tral component is larger than the threshold, given the null
hypothesis is present. By considering the assumed pdf (17)
under the null hypothesis, the false-alarm probability can
be derived as

�
� � ��



�� � �� � ��

�
(19)

� �
����
����

� �� �	


�
�

����
����

�
� (20)

By letting �
�
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�
����, and rearranging terms, we

have
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To find the �
�

�, the fixed point iteration method [6] is used
as follows :
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For the given �
�, we can find the final threshold ��� �
�

�

���

�
�������� by iterating with �

�

��� � � and the number
of iteration, 	 . According to this result, we can discover
that the threshold depends only on the noise statistics and
false-alarm probability.

3.3 Discussion

The proposed UMP-based VAD approach is similar to that
in [4]. [4] uses the Gaussian pdf for the speech signal
while this scheme uses the Laplacian and the UMP test.
Both methods requires the adaptive threshold which de-
pends only on the noise statistics and the false-alarm prob-
ability. The UMP test-based decision rule derived from the
Gaussian pdf is given by

���� � �� (23)

where the threshold, �� �
�
������ ����
�� [4]. This

VAD method compares the magnitude of the noisy spectral
component to a threshold ��

In order to implement the proposed VAD algorithm for
various noise environments, several factors such as the sum
of magnitude, threshold, and the noise power need to be
considered . It is well known that the smoothing parameter
using a forgetting factor and a hang-over scheme improves
the detection performance [1], [3]. Therefore, the 
�� and
threshold in (13) are modified to incorporate the forgetting
factor schemes such that
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where � ���
and ��� are the forgetting factors for the sum

of magnitude of real and imaginary parts and threshold, re-
spectively.

4 Experimental results

To verify the improved performance of proposed algo-
rithms, we compared the speech detection and false-alarm
probabilities (�� and �
�) for each VAD algorithm. We
define �� as the ratio of correct speech decisions to the
hand-marked speech frames, while �
� as that of false
speech decisions to the hand-marked noise frames. To
obtain �� and �
�, we made reference decisions for a
clean speech material of 456 s long by labeling manu-
ally at every 10 ms frame. The percentage of the speech
sounds is 58.2%, which consists of 44.8% voiced sounds
and 13.4% unvoiced sounds. To make a noisy signal, we
added the babble, factory and white noises from NOISEX-
92 database [7] to the clean speech waveform with varying
SNR. The VAD test was performed for each 10 ms frame.
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Figure 1: ROC curves for the Gaussian, Laplacian, Gaus-
sian UMP and Laplacian UMP test approaches with the
babble noise at 0 dB, 5 dB, 10 dB, 15 dB SNR, respec-
tively.

The performance of each approach was measured in
terms of the receiver operating characteristic (ROC) curve
which shows the tradeoff between �� and �
�. The ROC
curves are presented by figures comparing the proposed al-
gorithm with the conventional algorithms such as Gaussian
[1], Laplacian [2] and Gaussian UMP [4]. Figs. 1, 2 and 3
are ROC curves in babble, factory and white noises where
the SNRs are 0 dB, 5 dB, 10 dB and 15 dB, respectively.
The proposed VAD algorithm was implemented with the
forgetting factor scheme while keeping � ���

� ��� and
��� � ���, through the various experiments. In the case
of the babble and factory noises, which are shown in Figs.
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Figure 2: ROC curves for the Gaussian, Laplacian, Gaus-
sian UMP and Laplacian UMP test approaches with the fac-
tory noise at 0 dB, 5 dB, 10 dB, 15 dB SNR, respectively.

1 and 2, the UMP-based VAD algorithms outperformed the
Gaussian and Laplacian approaches. In a high SNR, The
ROC curves of UMP-based VAD tend to have lower per-
formance than Gaussian-based and Laplacian-based meth-
ods in very small �
� (below about 0.06) but we could
confirm that UMP-based methods have much more excel-
lent performance when �
� � ����. From Fig. 3, which
showed the results for the white noise, the UMP-based al-
gorithms yielded a performance superior to the Gaussian
method when �
� � ���� at all SNRs while a similar per-
formance to the Laplacian method. Also from the figures,
we can find that the Laplacian-based UMP has a better per-
formance improvement than the Gaussian-based UMP in
a low SNR while it has a similar performance in a high
SNR. From the experimental results, it is evident that the
proposed method based on the UMP outperforms the con-
ventional algorithm in the babble and factory noise envi-
ronments when SNR is low.

5 Conclusion

We have presented a new VAD algorithm based on the
Laplacian distribution and UMP test to detect the speech
or nonspeech from the input noisy signal. We have applied
the UMP test to find the new decision rule based on LRT as
well as the distribution of the magnitude of the noisy spec-
tral components. The efficient decision rule is derived to
compare the arithmetic mean of the sum of magnitude of
real and imaginary parts with the threshold which depends
only on the noise statistics and the false-alarm probability.
It has been found that the UMP test-based VAD algorithms
using Laplacian outperformed the conventional algorithm
in the environments such as babble and factory noise envi-
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Figure 3: ROC curves for the Gaussian, Laplacian, Gaus-
sian UMP and Laplacian UMP test approaches with the
white noise at 0 dB, 5 dB, 10 dB, 15 dB SNR, respectively.

ronments at a low SNR
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