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Abstract: - In this paper, an object-oriented model and a software environment for the management of OWL 
ontologies is presented. The object-oriented model allows a simple and complete representation of ontologies 
defined by using OWL DL profile. The software environment, called OWLET, implements this object-oriented 
model and provides a complete set of reasoning functions together with a graphical editor for the creation and 
modification of ontologies. OWLET can be very useful for realizing heterogeneous and distributed semantic 
systems where nodes differ for their capabilities (i.e., CPU power, memory size, …); in fact, it offers a layered 
reasoning API that allows to deploy a system where high power nodes take advantages of all the OWLET 
reasoning capabilities, medium power nodes take advantages of a limited set of OWLET reasoning capabilities 
(e.g., reasoning about individuals) and low power nodes delegate reasoning tasks to the other nodes of the 
system. 
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1   Introduction 
The mapping of an OWL ontology [1] into an object-
oriented representation can be very useful for 
increasing the diffusion of ontologies and semantic 
Web technologies. In fact, the availability of such a 
representation can be the basis for the development 
of some flexible and efficient software libraries for 
the management of ontologies that allow to cope 
with the limits of the current software libraries and 
tools for the realization of ontology based and 
semantic Web applications.. 
    The main problem of this mapping is that there are 
important semantic differences between OWL and an 
object-oriented language and so it is difficult to 
provide an object-oriented mapping that both 
minimizes the need of writing code manually and 
full satisfies OWL semantics. 
    OWL allows the definition of classes and 
properties as specialization of multiple classes and 
properties. Therefore, the object-oriented languages 
that provide multiple inheritance would seem to be 
the most suitable for representing OWL ontologies. 
However, the use of multiple inheritance can cause 
conflict because a subclass can inherits the same 
variable or method from different classes. These 
inheritance clashes are usually resolved by the 
subclass either redefining the conflicting variable or 
method for itself or by specifying which inheritance 
is preferred. These inheritance clashes are possible in 
representing OWL ontologies (e.g., when an OWL 

class can inherits a restriction on the same property 
from different classes) and so they must be managed 
through the manual or automatic generation of some 
additional code. 
    OWL ontologies can be represented also by using 
object-oriented languages that do not provide 
multiple inheritance. For example, some previous 
approaches coped with this problem by using Java 
interfaces [2],[3]. This solution only partially solves 
the problem because interfaces allow the definition 
of class variables and methods, while instance 
variables and methods code must be provided by the 
classes implementing the interfaces. Therefore, the 
representation of OWL ontologies requires the 
manual or automatic generation of a large amount of 
additional code.  
     Another problem of representing OWL classes 
and properties with classes of an object-oriented 
language is the mapping of OWL class and property 
names into class names of the object-oriented 
language. In fact, the most known object-oriented 
languages have restrictions on the syntax of class 
names different from the ones imposed by the OWL 
language. In this case, the solution is to: i) change 
the OWL class and property names on the basis of 
the restrictions of the target language (e.g., trading-
price may be changed to trading_price for defining a 
Java or C++ class) and ii) avoid the introduction of 
name conflicts (e.g., trading-price and trading+price 
cannot be both changed into trading_price). 
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    A solution for avoiding the previous problems, is 
the decomposition of inheritance into the more basic 
mechanisms of object composition and message 
forwarding [4]. Therefore, for example, an OWL 
class contains (the references to) its super classes, 
does not inherit their features, but can get/modify 
them through the methods provided by the super 
classes. Moreover, as done in other approaches, the 
problem of representing an OWL ontology is 
separated from the problem of acting and reasoning 
on it. This solution allows the definition of a very 
simple OWL ontology model based on few classes, 
that respectively define the variables for maintaining 
the components of a particular kind of OWL 
resource and implement the methods for getting and 
setting their values. Therefore, an OWL ontology is 
described by a set of instances of the classes 
respectively representing an OWL class, property 
and individual.. Moreover, this solution avoids the 
problem of mapping OWL resource names in 
admissible identifiers of the used object-oriented 
language, because the name of an OWL resource 
become a value that is stored into the corresponding 
variable of the OWLET instance representing such a 
resource. 
 
 
2   OWLET Ontology Model 
The OWLET ontology model provides a complete 
representation of OWL DL ontologies, is based on 
six Java classes: OwlOntology, OwlClass, 
OwlDatatype, OwlProperty, OwlRestriction and 
OwlIndividual and an OWL ontology is represented 
by a set of instances of the previous classes. 
Moreover, OWL ontologies and ontology resources 
can be identified through a variable of the previous 
classes that maintains the ontology/resource full 
URI. 
      

Id Uri 

Classes C = {c1, …, cn} 

equivalentClasses Ce = {c1, …, cn}, Ce ⊆ C 

disjointClasses Cd = {c1, …, cdn}, Cd ⊆ C 

Datatypes D = {d1, …, dn} 

Properties P = {p1, …, pn}  

equivalentProperties Pe = {p1, …, pn}, Pe ⊆ P 

individuals I = {i1, …, ih}  

equivalentIndividuals Ie ={ie1, …, ieh}, Ie ⊆ I 

differentIndividuals Id ={Id1, …, Idn}, Id ⊆ I 

Table 1. The OwlOntology class variables. 

     An OWL ontology is represented by an instance 
of the OwlOntology class and contains information 
about: i) all the classes, properties and individuals 
that are defined or referred in such an ontology, and 
ii) the equivalence and difference relationships 
among them (see table 1). 
     An OWL class is represented by an instance of 
the OwlClass class and contains information about: 
i) the class name, ii) the inheritance and composition 
relationships with some other ontology classes, iii) 
the composition relationships with some ontology 
individuals, and, finally, iv) the restrictions on 
ontology properties (see table 2). 
 

Id Uri 

subClassOf Csc = {c1, …, cn}, Csc ⊂ C 

unionOf Cuo = {c1, …, cn}, Cuo ⊂ C 

complementOf cc, cc ∈ C   

one of Ioo ={i1, …, in}, Ioo ⊆ I 

Restrictions Ri = {ri, …, rn} 

Table 2. The OwlClass class variables. 
 
     An OWL data type is represented through a 
subclass of the OwlDatatype class. In particular, 
while all the OWL predefined data types (i.e., the 
XML Schema data types and the RDF literal data 
type) are represented by the instance of a “singleton” 
class, the enumerated data types are represented by 
instances of the DataRange class. 
 

Id Uri 

Type v, v ∈ {Object, Datatype}   

Domain Cd = {c1, …, cn}, Cd ⊆ C 

Range Tr = {t1, …, tm}, 
 tr ⊆ D if type = Datatype 
 tr ⊆ C if type = Object 

subPropertyOf Psp = {p1, … pn}, Psp ⊂ P 

Functional b, b ∈ {true, false}   

Transitive b, b ∈ {true, false}   

Symmetric b, b ∈ {true, false}   

inverseOf pj, pj ∈ P   

inverseFunctional b, b ∈ {true, false}   

Table 3. The OwlProperty class variables. 
 
     All the types of OWL properties (i.e., Annotation, 
Datatype, Object and Ontology properties) are 
represented by instances of the OwlProperty class. 
While annotation and ontology properties only 
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contain the information about their type, Datatype 
and Object properties also contain information about 
the different property facets (see table 3). 
 

classId Uri 

propertyId Uri 

maxCardinality n, n ≥ 0   

minCardinality n, n ≥ 0   

allValuesFrom Tavf = {t1, …, tn}, 
  Tavf ⊆ C if pj.type = Object 
  Tavf ⊆ D if pj.type = Datatype 

someValuesFrom Tsvf = {t1, …, tn}, 
  Tsvf ⊆ C if pj.type = Object 
  Tsvf ⊆ D if pj.type = Datatype 

hasValue Vhv = {v1, …, vn}, 
   Vhv ⊆ I if pj.type = Object 
   Vhv ⊆ D if pj.type = Datatype 

Table 4. The OwlRestriction class variables. 
 
     The set of restrictions that must be applied to the 
values of a specific property of the individuals 
belonging to a specific OWL class are grouped 
together and represented by an instance of the 
OwlRestriction class.  This class maintains the 
information about the possible kinds of restriction  
that can be applied to a Datatype or Object property 
(see table 4). 
     An OWL individual is represented by an instance 
of the OwlIndividual class and contains information 
about: the classes to which the individual belongs 
and the property-values pairs describing the 
individual (see table 5). 
 

Id Uri 

individualOf Cio = {c1, … cn}, Cio ⊆ C 

Values V = {V1, … Vn}, 
  Vj = {v1, … vn}, 
    vjk ∈ I if pj.type = Object 
    vjk ∈ D if pj.type = Datatype 

Table 5. The OwlIndividual class variables. 
 
 
3   OWLET Ontology Representation 
Although a large part of the knowledge represented 
by OWL constructs can be directly mapped into 
equivalent entities of the OWLET classes, some of 
such knowledge needs more complex elaborations. 
     For example, the OWLET model does not 
provide any entity for maintaining the knowledge 
represented by the OWL intersection construct. It is 
because an OWL class defined as the intersection of 

some other classes is equivalent, from the semantic 
point of view, to a class defined as the subclass of 
these other classes, and because an OWL class 
defined as the intersection of a set of property 
restrictions can be represented, in the OWLET 
model, by a class defined as composition of such a 
set of restrictions. 
OWLET provides a parser that maps OWL DL 
ontologies, represented in the OWL/RDF format, 
into an object-oriented representation based on the 
OWLET model. 
     For example, given the OWL/RDF fragment of 
figure 1, describing the WhiteWine class of the Wine 
ontology [5], then the OWLET parser creates an 
OwlClass instance for representing the WhiteWine 
class and adds a reference to the Wine instance to its 
subClassOf variable. Moreover, it creates an 
OwlRestriction instance for representing the 
restriction on the hasColor property and adds it to 
the restrictions variable of the WhiteWine instance. 

 

     The restrictions defined inside an OWL subclass 
axiom are managed in the same way. For example, 
given the OWL/RDF fragment of figure 2, 
describing the Wine class of the Wine ontology [5], 
then the OWLET parser creates an OwlRestriction 
instance for representing the restriction on the 
madeFromGrape property and adds it to the 
restrictions variable of the Wine instance. 

<owl:Class rdf:ID="Wine">  
  <rdfs:subClassOf    
     rdf:resource="&food;PotableLiquid"/>  
  <rdfs:subClassOf> 
    <owl:Restriction>  
      <owl:onProperty         
        rdf:resource="#madeFromGrape"/> 
      <owl:minCardinality    
          rdf:datatype="&xsd;nonNegativeInteger"> 
1    </owl:minCardinality> 
    </owl:Restriction>  
  </rdfs:subClassOf> 
  ...   
</owl:Class> 

Fig. 2. The Wine class definition. 

<owl:Class rdf:ID="WhiteWine"> 
  <owl:intersectionOf 
rdf:parseType="Collection"> 
    <owl:Class rdf:about="#Wine" /> 
    <owl:Restriction> 
      <owl:onProperty 
rdf:resource="#hasColor"/> 
      <owl:hasValue rdf:resource="#White"/> 
    </owl:Restriction> 
  </owl:intersectionOf> 
</owl:Class>
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     Anonymous classes can be used in an OWL 
ontology. For example, given the OWL/RDF 
fragment of figure 3, taken from the Wine ontology 
[5] and describing the NonFrenchWine class as the 
intersection between the class Wine and an 
anonymous class, then the OWLET parser creates 
two OwlClass instances for representing the two 
classes of the intersection and assigns to the second 
instance a special identifier having the following 
form: 
 
<AnonymousClassID> = 
    <OntologyURI> ‘unnamedClass’ <counter> 
 
where <counter> is an integer that is incremented 
each time a new anonymous class is found. This 
naming solution avoids the conflict between the 
names of anonymous classes of different ontologies. 
 

     Anonymous individuals are managed in the same 
way. For example, given the OWL/RDF fragment of 
figure 4, taken from [1] and describing an individual 
as composition of two anonymous individuals 
respectively belonging to the Measurement and 
Quantity classes, then the OWLET parser creates 

two OwlIndividual instances for representing the two 
individuals and assigns them an identifier similar to 
the one assigned to anonymous classes: 
 
<AnonymousIdividualID> = 
    <OntologyURI> ‘unnamedIndividual’ <counter> 
 
where <counter> is an integer that is incremented 
each time an anonymous individual is found. Also in 
this case, the naming solution avoids the conflict 
between the names of anonymous individuals of 
different ontologies. 
 

     In some cases, the OWLET parser needs to 
introduce some additional anonymous classes to 
represent an OWL class defined as composition 
among intersections of classes, restrictions and 
individuals. For example, given the OWL/RDF 
fragment of figure 5, taken from  and representing an 
anonymous class as union of an enumeration, that 
contains the Tosca and Salome Opera individuals, 
and of a restriction on the property composed-by, 
then the OWLET parser creates two anonymous 
OwlClass instances for respectively encapsulating 
the enumeration and the restriction. 
     Another example of the need of additional 
anonymous classes is presented by the OWL/RDF 

<owl:Class rdf:ID="NonFrenchWine"> 
 <owl:intersectionOf rdf:parseType="Collection"> 
  <owl:Class rdf:about="#Wine"/> 
  <owl:Class> 
   <owl:complementOf> 
    <owl:Restriction> 
     <owl:onProperty rdf:resource="#locatedIn"/> 
     <owl:hasValue rdf:resource="#FrenchRegion"/> 
    </owl:Restriction> 
   </owl:complementOf> 
  </owl:Class> 
 </owl:intersectionOf> 
</owl:Class> 

Fig. 3. The NonFrenchWine class definition. 

<owl:Class> 
  <owl:unionOf rdf:parseType="Collection"> 
    <owl:oneOf rdf:parseType="Collection"> 
      <owl:Thing rdf:about="#Tosca"/> 
      <owl:Thing rdf:about="#Salome"/> 
    </owl:oneOf> 
    <owl:Restriction> 
      <owl:onProperty 
         rdf:resource=" #composed-by"/>  
        <owl:hasValue rdf:resource="#Puccini"/>  
    </owl:Restriction> 
  </owl:unionOf> 
</owl:Class> 

Fig. 5. An anonymous class defined as union of an 
enumeration and a restriction. 

… 
<owl:Restriction> 
  <owl:onProperty rdf:resource="#hasDrink"/>  
  <owl:allValuesFrom> 
    <owl:Restriction> 
     <owl:onProperty rdf:resource="wine:hasSugar"/>  
     <owl:hasValue rdf:resource="#Dry"/>  
    </owl:Restriction> 
  </owl:allValuesFrom> 
</owl:Restriction> 
… 

Fig. 6. A restriction on the hasDrink property. 

<Measurement> 
  <observedSubject rdf:resource="#JaneDoe"/> 
  <observedPhenomenon rdf:resource="#Weight"/> 
  <observedValue> 
    <Quantity> 
      <quantityValue 
rdf:datatype="&xsd;float">59.5</quantityValue> 
      <quantityUnit rdf:resource="#Kilogram"/> 
    </Quantity> 
  </observedValue> 
  <timeStamp rdf:datatype="&xsd;dateTime"> 
    2003-01-24T09:00:08+01:00 
  </timeStamp> 
</Measurement> 

Fig. 4. An anonymous Measurement individual. 
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fragment of figure 6 that is taken from [6]. This 
fragment describes an allValuesFrom restriction that 
limits the values of the hasDrink property to the 
individuals whose hasSugar property has Dry as a 
value. In this case, the OWLET parser creates an 
anonymous OwlClass instance for encapsulating the 
restriction on the hasSugar property and adds this 
OwlClass instance to the allValuesFrom variable. 
 
 
4   OWLET Reasoning Tools 
OWLET provides a set of tools for reasoning on 
ontologies. In particular, it implements algorithms 
for ontology consistency, class and data type 
satisfiability, subsumption, equivalence, individual 
instantiation, classification and equivalence, and 
property consistency and equivalence. 
     Some of the reasoning algorithms (i.e., ontology 
consistency and class satisfiability) are not realized 
through a direct processing on the OWLET ontology 
representation, but are realized through a new OWL 
ontology representation obtained from the OWLET 
representation by only transforming the OWLET 
class representation into a new class representation 
that defines an OWL class in a disjunction normal 
form on individuals and restrictions involved in its 
definition. 
     In fact, given an OWL class, described through 
the OWLET model and expressed by the form: 
 
(1) cx = Rx ∩ SuperCx ∩ Ux ∩ Ix ∩ ccx 
 
we can apply a recursive expansion to: i) the super 
classes (SuperCx), ii) the union classes (Ux), and iii) 
the complement class (ccx). Finally, we can combine 
all the restrictions (Rx) of the expanded classes 
transforming (1) into the equivalent form: 
 
(2) cx ≡ I’x ∪ (R’1 ∩  NI’1)  ∪ … ∪ (R’n ∩  NI’n) 
 
where: I’x and R’i are respectively a set of 
individuals and a set of restrictions participating in 
the definition of cx, and NI’i is a set of individuals 
participating in the definition of the complement 
class of cx. 
     The class representation described by (2) has the 
advantage of checking class satisfiability of an OWL 
class by simply checking either if the are some 
individuals involved in the definition of a class (I’x is 
not empty) or if there are at least a term, R’i, that can 
be satisfied by at least an ontology individuals that is 
not member of the corresponding set of individuals, 
NI’i. 
 
 

5   Conclusion 
In this paper, an object-oriented model and a 
software environment, called OWLET, for the 
management of OWL ontologies has been presented. 
     The object-oriented model allows a simple and 
complete representation of ontologies defined by 
using OWL DL profile. The software environment is 
realized by using the Java programming language 
and, besides implementing the object-oriented model 
and providing an API for the creation and 
manipulation of OWL ontologies, offers a complete 
set of reasoning functions for ontology consistency, 
class and data type satisfiability, subsumption, 
equivalence, individual instantiation, classification 
and equivalence, and property consistency and 
equivalence. Moreover the creation and manipulation 
of OWL ontology is simplified thanks to graphical 
editor (see figure 7) that allows: the visualization of 
the relationships among classes, properties and 
individuals, the creation, modification and deletion 
of both new classes, properties and individuals, and 
of relationships among them. 

OWLET can be considered an interesting 
environment for the development of ontologies, but, 
in particular, it can be very useful for realizing 
heterogeneous and distributed semantic systems 
where nodes differ for their capabilities (i.e., CPU 
power, memory size, …); in fact, it offers a layered 
reasoning API that allows to deploy a system where 
high power nodes take advantages of all the OWLET 
reasoning capabilities, medium power nodes take 
advantages of a limited set of OWLET reasoning 
capabilities (e.g., reasoning about individuals) and 
low power nodes delegate reasoning tasks to the 
other nodes of the system.. 
    Future work on the OWLET system will be related 
to: i) the realization of an accurate performance 

 

Fig. 7. A view of the OWLET ontology graphical 
editor. 
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analysis and its comparison with the most known 
systems for OWL ontology management and 
reasoning (e.g., FACT++ [7] and RACER [8]), ii) 
the enhancement of the ontology development tools 
(e.g., the introduction of a 2D or 3D visualization of 
the graphs representing the relationships among the 
different ontology resources), and iii) the 
continuation of its use and experimentation for the 
realization of systems in both the semantic Web and 
in the e-business application fields. 
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