
 Software Systems Reliability Characteristics

 MARIAN POMPILIU CRISTESCU GABRIEL SOFONEA
 Faculty of Economics Faculty of Sciences
 Economy Informatics Department Computer Science Department
 “Lucian Blaga” University of Sibiu “Lucian Blaga” University of Sibiu
 Bd. Victoriei No. 10, Sibiu Bd. Victoriei No. 10, Sibiu

 ROMANIA ROMANIA

Abstract: - The target of the present trend of the software industry is to design and develop more reliable programmes,
even if, in the beginning, this requires larger costs necessary to obtain the level of reliability. It has been found that in the
case of programmes which contain large amounts of components - financial and accounting programmes are also included
here – the actions taken to increase the level of reliability in the operational stage induces a high level of costs. This one is
superior to the one that involves obtaining systems of programmes with an adequate reliability, before releasing them on
the market and before using them. Before taking into account the material and financial aspects that involve obtaining the
adequate reliability, we must consider the social effects that occur because of the lack of reliability of programmes.

Key-Words: - Software reliability, Software metrics, Object-oriented software, Error, Fault, Failure, Programming
techniques.

1. Introduction

 The main method used in building complex
systems is abstractization. A system is built on
levels; level B is made out of components from level
A. But at the same time, components from level B
are used as if they were atoms, independently, to
build level C and so on.
An important subject in the theory of reliability is
the construction of more reliable software, from
components which are more or less reliable. If a
system works only when every component is
functional, it is impossible to build a complex
system because the reliability decreases exponential
with the amount of components.
Certain classes of programmes, such as those from
air traffic controls and supervision of nuclear power
plants, need a high reliability level. In critical
programmes, the architects of the systems take into
consideration the possibility of failure, which they
treat in the software
A system of programmes, from a static point of
view, appears as a function f defined through X, with
values in Y – of final results.

Function represents in a static way the
system of programmes and is:

YXf →:

• a partial function, if for every x∈ X there is a value
y ∈ Y so as y=f(x);
• a total function, if for every x∈ X there is a value y
∈ Y so as y=f(x).
In conclusion the total function correspond to a system
of programmes that allows the solving of a problem
for every initial data, and the partial function
corresponds to a system of programmes which
supplies us with solutions of certain sets of values.
A system of financial and accounting programmes is
identified with a complex process, made out of many
subprocesses, based on the rivalling model. This
means separating different tasks into performing
processes which are parallel different. Figure 1
presents the way such a system of programmes is
structured.
A problem which is dealt with by using the calculator
is represented through a calculating function, an
algorithm. The same function is evaluated by a set of
algorithms. There are functions that cannot be
evaluated by algorithms.

Proceedings of the 11th WSEAS International Conference on COMPUTERS, Agios Nikolaos, Crete Island, Greece, July 26-28, 2007 343

mailto:mp_cristescu@yahoo.com
http://compose.mail.yahoo.com/?To=gabi_sofonea%40yahoo.com

Fig.1 The tree of interconnected components

The structure is dynamical, which means that new
performing processes are created or old ones are
finished, according to the will of the user. The lines
from the figure show the component which is being
used and the using component, and the way we look
at the tree is from top to bottom.
Between the components there are no implicit
connections once these are appealed in the system,
but if one wishes, a connection can be made. In this
way a total control can be restored over every
component of the system. If the example of figure 1
is analysed, we can see that the components A, C, E
and F are interconnected; therefore the connection
works both ways, no matter if component C has
established the connection or component E or F.
Economical procedures and especially those from
the financial and accounting field are recognised as
having a high level of complexity. The difficulty
associated with the solutions of simple problems
united is smaller than the one associated to the initial
complex problem. The architecture of the system
expresses the way the system is entirely organized in
components named subsystems. The interaction is
produced through the exchange of the performing
control. In the case of sequential programmes, the
control belongs to only one module. The software
architecture also includes information regarding the
necessary time needed to perform every module.
 The financial and accounting programmes are
made out of subsystems; each is made out of smaller
subsystems; the lowest level is achieved by modules.
 A subsystem is a package of connected classes,
operations, associations, events and restrictions.
These are identified by the services offered; services
are groups of functions with the same goal.
 A system of financial and accounting programmes
offers a multitude of services through its
components. The goal is to satisfy the users` needs
for a long period of time and at a high quality level.

The possibilities that the given functions are correctly
executed for some time by the system are done
through the help of reliability. The reliability of the
system is determined by the reliability of the
components, the number of components and the
structure of the system.

2. Stimulating the reliability of the
financial and accounting systems

A financial and accounting system offers a variety of
functions; therefore it contains a big amount of
components. Evaluating the reliability of the system is
done by analyzing the reliability of it’s` components.
In this process, the structure scheme must be taken into
consideration. The components of the system are
represented in figures 2 and 4. In a structural reliability
scheme, these are connected in series or parallel.

Fig.2 A series structural scheme from a financial and
accounting system

Fig.3. A parallel structural scheme from a financial
and accounting system

 In order to assure a normal functioning of a
performing step, in the series scheme all components
have to be working, but in the case of the parallel
scheme only one component must be working.
The numerical simulation of the reliability of the
financial and accounting system has been achieved
through the following algorithm:
• for n in series connected components, each of them
having the reliability R, n evenly distributed numbers
between 0 and 1 are generated. If all n numbers are
smaller or equal to R, the system is functioning
properly;

FISA_CLI

BAL_CLI

SIT_CLI

AD_NOM FAC_NIR JUR_CUMP

Proceedings of the 11th WSEAS International Conference on COMPUTERS, Agios Nikolaos, Crete Island, Greece, July 26-28, 2007 344

• for n in parallel connected components, each
with the reliability R, n evenly distributed numbers
between 0 and 1 numbers are generated. If only one
of the n numbers is bigger or equal to R, the system
is functioning properly.
Estimating the global reliability of the system is
made by repeating these numerical simulations for a
number of times equal to the number of performing
steps allowed. Because in the case of the financial
and accounting system this number is high, the
problem has been simplified and only 500
simulations have been performed.

a). The numerical simulating programme of
performing components connected in series
n = [150,300]; % number of simulations
R = 0,8; % reliability of the components
m = 3; % number of series connected components
for j = 1 : length(n)
 k = 0;
 for I = 1 : n(j)

 x = row(1,m);
 if all(x<=R)
 k = k + 1;
 else
 end
end
f(1,j) = k / n(1,j); % reliability
end

b). The numerical simulating programme
of performing components connected in
parallel

n = [150,300]; % number of simulations
R = 0,8; % reliability of the components
m = 3; % number of parallel connected components

for j = 1 : length(n)
 k = 0;
 for I = 1 : n(j)
 x = row(1,m);
 if any(x<=R)
 k = k + 1;
 else
 end
end
f(1,j) = k / n(1,j); % reliability
end

c). The global simulating programme of 500
performed simulations
n = 500; R1 = 0,8;R2 = 0,92;
F1 = row(n,1); F2 = row(n,1);
N = length(F); % number of functions
fprintf(The reliability of the system is %3.2f\n',N/n)

The first programme takes figure 2 into consideration
and uses components with the reliability R=0,8. The
second treats the case of figure 3 and also uses
components with the reliability R=0,8. In order to
compare the calculated reliability, a number of 150
and 300 simulations have been conducted. The third
programme takes into consideration a series structure
made out of two components, the first reliability
R1=0,8, and the second reliability R2=0,92.
 After the first programme performed, the reliability
obtained was: [0,5200 0,5000].
 After the second programme performed, these values
of the reliability were offered:
[0,9920 0,9960].
 After the third programme performed, this value was
obtained: The reliability of the system is 0,74.
 In practice it was been discovered that for financial
and accounting programmes which contain a big
number of components, using the series and parallel
scheme does not assure a high level of reliability.
Therefore, a mixed structure that combines the
advantages of both types is used. In figures 4.a and 4.b
two specific cases of such mixed structures are
presented. These are frequently used for financial and
accounting evidences.

FISAEC

4 a

4 b

Fig.4 a, b Mixed structural schemes

FISAIM

CALC_RUL BAL_SIT

P_ORE

P_ZILE

SAL_RLZ CALC_CO

Proceedings of the 11th WSEAS International Conference on COMPUTERS, Agios Nikolaos, Crete Island, Greece, July 26-28, 2007 345

The following reliability calculations are used in
both cases:
 in the first case, from figure 4.a, the

reliability is given by the relationship:

(∏ ∏
= =

−−=
n

i
i

n

i
iim RRRR

1 1

1)

)

 (1)

 for figure 4.b the reliability is given by the

relationship:

() (∏ ∏
= =

−+−−=
n

i

n

i
iiim RRRR

1 1

111 (2)

Because the complexity level of these schemes
is very high, the very difficult necessity of
simplification the structure function appears. In
specialized literature [11], [7], [3] different methods
of reducing the structure of the function and
calculating the reliability of mixed structural
schemes are presented. According to the method
presented in [4], the components of a financial and
accounting system must be grouped regarding to the
way they are situated in the serial or parallel graph
and so, we get a primary level of a programming
group. This group is formed by components which
are connected in series or parallel. A new group on
the next hierarchical scale follows and this procedure
is continued until a single series or parallel structure
of n levels is formed, where levels of n-1
components are displayed. These methods have a
low applicability rate due to a set of assumptions on
which it relies and too many calculations.

3. Using modern programming techniques to
increase the reliability of financial and
accounting software
 The technique of object oriented modelling is a
methodology used to develop financial and
accounting software by using a collection of
predefined techniques and noting conventions. It
follows the entire life cycle which contains:
analysing, designing, implementation and testing.
 These are followed by the stage in which it is used,
when the maintenance and improvements on the
system are done, to ensure the reliability needs
imposed by the client.
For the development of accounting programming
objects, two approaches are practiced: quick
prototypization and the development of the entire

life cycle. In the quick prototypization a small part of
the system is initially developed, after this it is
improved through gradual improvements of the
specification and implementation, until it becomes
robust.
 The development methodology of software
designed for financials and accountings is firstly
characterized by the analyzing and projection steps,
whereas the implementation and testing steps rely on
the first. The analysis process has as a result a formed
model which contains three essential aspects of the
system: the objects and the relationships that exist
between them, the dynamic flow between the orders
and the functional transformation of data, using certain
restrictions. Therefore the OMT methodology is bases
on three models directed towards the object:
• the object oriented model – describes the static
structure of data;
• the dynamic model – describes the temporal
relationships of orders,
• the functional model – describes the functional
relationships between values.
The programming technique frequently used is chosen
on criteria such as error and performance tolerance. In
[4] it is told that the extension of the traditional library
of stopping points is easy to do, so as this one is able
to notice more directions from the same process. A
multidirectional set library of stopping points, which
works at a processing level, must save all directions
for a verification point and to restore each of them
when it is restarted.
In [12] it has been demonstrated that this mechanism
of stopping points increases the flexibility and
efficiency of the error tolerance schemes. Due to these
characteristics it is used in the development of
financial and accounting
systems, in order to increase the efficiency of the tests
and to raise the reliability level.
To exemplify the way this mechanism is used, an
accounting programming system which, for error
tolerance, uses the distributing algorithm of coming
and going – present in [6], is taken into consideration.
As a consequence of the existing relationships, the
functions of the programming system become
interdependent. If one of them fails, the algorithm
determines which of the functions is dependent on the
one that failed, and these must be performed
backwards from the last stopping point. This solution
is suboptimal when every function is multidirectional.
In practice, it has been observed that only the paths

Proceedings of the 11th WSEAS International Conference on COMPUTERS, Agios Nikolaos, Crete Island, Greece, July 26-28, 2007 346

dependent on the failing function must be performed
backwards and the others remain unchanged. When
establishing stopping points and backward points the
following aspects are taken into consideration:

• the minimum frequency of performance
for registering the dependencies and other
information about the performance of the
programme;
• the procedure for establishing selective
testing points by using the information and the
guiding points so as to develop the restore
algorithm;
• the selective backwards algorithm based
on guiding points.
 To demonstrate how to use the
stopping point and backward point technique in
order to increase the reliability of financial and
accounting software based on object oriented
modelling, two arguments are taken into
account:
• investigating the way group stopping
points, for isolated groups of objects and
communication ways of the programme, are
established;
• investigating the way in which certain
performing ways from a programme can be
performed backwards in a selective way and
others continue to be performed; during this
period the general well being of the
programming system is preserved. Developing
error tolerance schemes at a high level involves
the usage of selective algorithms. In [9] it is said
that the conventional models, that coordinate the
process of restoring, after errors of interacting
components are detected, must be implemented
at the top of selective algorithms.

 By using these techniques, the results obtained
due to the growth in error tolerance and, therefore, of
the reliability, indicate the fact that using selective
schemes at processing levels is better than using
techniques based on check points and also using
recovery schemes when the number of current
functions or error numbers are high.

4. Developing high reliability for
object-oriented software

The software developing process is schematized
through the next stages: system feasibility studying,

 problem analysing, designing, codification and system
testing.
 For a procedural programme system these stages
correspond to a “warerfall” pattern. This means that
the system is divided into substages and each
requirement is previously known so that the tasks are
performed one by one.
 In the development of bookkeeping software based
on this technology the starting point consists of
recognising the requirements of the matter. Therefore,
an initial version is designed and then, as the
requirements are better defined, the system is
completed by adding new components or the existing
ones are improved.
 Adopting the evolutionary developing design leads
to obtaining intermediate forms of the system, called
prototypes. These resemble versions of the final form
that are improved in time, as the developing process
continues. Such an approach allows the client’s
effective control over the system’s final version; the
changes that occur in the client’s requirements are
accepted even if the analysis and design are in an
advanced stage. The client’s implication in the
development process allows setting components and
important sequences of execution. This determines the
diminishing of the testing effort and implicitly of the
costs and reliability increase.
 Based on the evolutionary model, the development
stages of the programming system are performed with
every frequentation and the resulted prototype is
evaluated for detecting the errors which are corrected
in the next frequentation. In the system feasibility
study stage the clients demands are clearly defined and
through the client’s implication a solution are chosen
from the existent ones.
 The architecture of the software for bookkeeping
is divided in a number of components that consist of
one or more objects. These components are collections
of objects which collaborate for producing a service
set. Each component is described by: functions,
internal objects, external objects with which interfaces
also interact. It is because of the interface that a
component looks like a “black box” that shows only
the entrances and emergences.
 The testing stage involves the validation of the
system results from the previous phases. The
organisation of the designing process of the
programme systems oriented toward objects involves
the existence of different levels of testing. This
includes the testing of methods, classes and

Proceedings of the 11th WSEAS International Conference on COMPUTERS, Agios Nikolaos, Crete Island, Greece, July 26-28, 2007 347

 modules, being based on an established initial plan
that is finalised by testing the entire system. Object-
oriented technology is used for testing the software
and its main effect consists of improving the quality.
A new programme system contains reused objects
that have already been tested and have an
appropriate reliability level. The result is that the
testing effort is minimised and the reliability
increases. In this case, the testing is aimed toward
new components and especially toward the critical
ones.
 Modularity is another important facility,
frequently used for developing programme systems
designed for financial bookkeeping and it is based
on object modelling. It allows an easier detection of
software errors. The repairing process of these
systems is also improved by establishing better
connexions between software items and real objects.
As a result of this facility programme systems are
divided in autonomous components. This has
important effects on the human resources involved in
the development and there, on the costs. The
structure and organisation procedures of these
resources are defined according to the defining
manner of the components as well as the integration
manner in the whole system.
 It is recommended that these components
should be developed by interfunctional teams that
integrate analysis, designing, codification and testing
abilities so that the development of each component
is to be accomplished individually. In order to
increase the functionality level, the assembly of
different components must be done by groups of
professionals that are in charge with the testing
process of the entire programme system.

 Practically it has been uncertain because of the
limited resources of the companies which develop
programme systems for bookkeeping; some of these
recommendations are not followed. Therefore, in
most cases the assembly of the components and
testing the entire system is made by the same people
that have taken part in the analysis, designing and
codification phases. Thereby, they sometimes have a
subjective vision upon the development process that
leads to the decreasing of the ability to detect errors
in the initial phases. In this kind of situations, the
programme systems are moved to the operational
stage, although their reliability level is low. The
exploitation costs of these systems are rather high,
and the users are not satisfied with the quality of the
offered services.

 In order to investigate the actual spreading of
object-oriented technology among the producers of
software destined to keep a financial-accountancy
record and to analyse the characteristics of these
practices on the software market, along the years,
many actions have been undertaken. One of these is
represented by the straw poll made by a branch of IBM
in 2004. This was based on a questionnaire sent by e-
mail and distributed at conferences. The questionnaire
was divided into 3 sections: technology, development
process and cost.
 Based on the results of the straw poll, the weight
of the object-oriented software production in the total
financial-accountancy software production has been
determined. This aspect is shown in figure 5.

Fig.5 Grouping software producers according to the
production of object-oriented software level (Source:

http://www.garavelli/poliba/docs.html)

 Using the object-oriented technology is in many
situations delayed by the high costs required by the
preparation. According to the dates, in only 8% of the
companies the programmers who have always worked
corresponding to this technology represent more than
80%, while in 57% of cases more than two thirds of
the personnel has been converted to work on the basis
of the principles of object-oriented technology.
Concerning spreading the methods of object
orientation in the phases of analysis and designing of
the software development process, it has been
observed that 35% of the companies do not use any
kind of methodology at all. These results were
compared to those in section 3 of the questionnaire

Proceedings of the 11th WSEAS International Conference on COMPUTERS, Agios Nikolaos, Crete Island, Greece, July 26-28, 2007 348

http://www.garavelli/poliba/docs.html

which refers to the exploitation costs of developed
programme systems. It has been established that the
costs level for those companies which do not use any
kind of methodology is 27% higher compared to
those who use object-oriented methodology and 16%
compared to those which use the classical object-
oriented methodology. 75% of the companies use
prototypes during the process of software
development. The degree of prototypes use is shown
in figure 6.

Fig.6 Using prototypes

(Source: http://www.garavelli/poliba/docs.htm)

Analysing the data has shown the fact that using the
inter-functioning teams in the process of
development is very frequent (68%). For 53% of the
companies the size of the team depends on the
complexity of the programming system, and for
33%, on its` size. In 69% of the cases the team
consists of employees with different abilities, but in
19% of the cases the abilities of the members are
homogeneous. The results also show that only 20%
of companies use a system of metrics to control the
quality, and 64% do not use any kind of metrics.
In figure 6 we can see that the frequency of
prototyping is very high for 38% of them, when 24%
is dependent on the product, and 13% depends on
the client.
The companies questioned were asked for their
opinion regarding the improvement of the reliability,
as a consequence of four key influential factors
which were placed on a scale of 0 to 3. The analysis
showed that important factors were considered the
development of reusable components (2,38), reusage
of the existing components (2,26) or using
innovative technological software (2,23). Reusing
parts is considered to be the most efficient way of
making reliability grow and this is why 66% of the
companies produce own software components,

 designed for future reuse. The reusable components
are produced during the development of a specific
programming system (50%) or as a result of current
activities (23%). Only 16% of companies do not use
these reusable components in the process of
improvement of the reliability of their software.
 Because of this data, the majority of companies
that develop software designed to keep the financial
and accounting evidence use the technique of object
orientation. Using reusable components represents a
decisive factor in the process of reducing costs and
improving the reliability. To evaluate the reliability of
the software of many companies, adequate metrics and
models are used.
 The cost, from the total of sales that are formed
when acquiring these components is smaller than 10%,
for most companies (69%), whereas for 19% of
companies it is smaller than 20%, growing until 30%
for a percentage (12%) of the companies.

5. Specific aspects of the reliability of
accounting software

The following factors determine the importance of the
study of the reliability of programmes:
• the growth in the complexity of the functioning
programmes, as a result of them being included in big
software, and of the important functions that these must
realize; the consequence is a growth in the cost of the
user, in case of errors;
• high expectations regarding the quality of
software;
• the complexity of the exploitation needs;
• growing cost of exploitation and maintenance.
One of the characteristics of the annual production of
software consists of creating and developing complex
systems – from the functional point of view. The
programmes are parts of such complex systems;
therefore they must match the general conditions of the
system. The incorrect function of one of them, may lead
to false results. The growing needs related to the
functioning quality of programmes and of the systems,
find their source, for example, in: a high flexibility,
maintainability, portability, integrity, etc. Firstly, these
needs must be satisfied in the previous steps, which
precede the current exploitation of the product by the
user. When the programming system in the hands of the
beneficiary is operational, only its` quality must be
confirmed.

Proceedings of the 11th WSEAS International Conference on COMPUTERS, Agios Nikolaos, Crete Island, Greece, July 26-28, 2007 349

http://www.amadeus/syste%7E/uk/cs/docs.htm

The growth in the costs of exploitation and
maintenance of software is mostly determined by a
lack of the reliability of the programmes it consists
of.
In practice it has been discovered that, in the
development stage, between the costs of
development and the level of reliability of
accounting software there is a tight bond; the
components that need a high level of reliability have
bigger costs in order to achieve this goal.
Testing is a method of improving the reliability of
accounting software. A high level of reliability is
achieved when the time span in which the testing is
done is high and when the test are refined. The
testing process involves human and material
resource, and an increase in the testing efforts
generates a growth in the costs of high level
reliability components.
In order to study these connected relationships, three
components of the programming system
CONTGEST have been analysed. Each component
had a specific level of reliability, according to its`
operational profile. The time of the tests was record.
A specific level for the cost had been attributed to
the components, according to the total costs. The
characteristics recorded are shown in table 1.

Table 1. The characteristics of the components of the

programming system CONTGEST

 By analysing the data presented in table 1, we
can observe that between the reliability and the time
of testing there is nonlinear dependence. Figure 7
shows the relationship existing between these
characteristics. We can see that the time of testing is
not the only factor that influences the reliability and
this is why other factors must be taken into
consideration.

Fig.7 The relationship between the reliability and the
time of testing for the components of the programming

system CONTGEST

Due to a bigger appealing time of the programme
MOD_NOM we can see that it has a high level of
reliability, which influences the general reliability of
the programming system CONTGEST. To obtain this
goal, supplementary tests have been conducted, this
leading to a growth in the percentage of the cost for
this programme in the total cost of the three
components.

Fig.8. The depending relationship of the reliability and

the costs for the components of the programming
system CONTGEST

 If we take into consideration the complexity of the
programming system CONTGEST and its` structure,
the analysis should be extended to a global level and
we can determine the way characteristics such as
testing time and costs influence the reliability of the
general system. The information regarding the needs

Component Time of
testing (h)

Costs
(%)

Reliability
(%)

AD_NOM 51 27 76
ST_NOM 37 15 70

MOD_NOM 82 58 81

Proceedings of the 11th WSEAS International Conference on COMPUTERS, Agios Nikolaos, Crete Island, Greece, July 26-28, 2007 350

of the users and also the policy of the company
which developed the product, regarding the ratio
price/quality interfere in this process.
Because the users did not express been given out for
usage without maximizing its` reliability. In the
exploitation period problems regarding specific
needs of the users have appeared, this leading to
higher level of maintenance costs, and in two cases,
the first version of the product had not been used
before the newer version had not appeared.

6. Conclusions

 In the study of the reliability of
software, an important role is attributed to the
existing relationship between the costs of
development of a programming system and its`
reliability. Obtaining a level of reliability that carries
out all the needs imposed by the system, involves
big costs in the development stages. These are
otherwise smaller that the costs necessary to obtain
the reliability needed in the process of exploiting the
system – which has low reliability components.
The cost that involve the exploitation and
maintenance of a financial and accounting software
are directly depending on the level of reliability of
the components and the reliability needs imposed by
the system. Therefore, when interfering we do not
always achieve noticeable effects. There are cases
where if we distinguish an error, others are
generated.
If we take into consideration the variety and
complexity of accounting situations that the
programming system must deal with, the result is
that efficiency is given firstly by the way they
respond to the needs of the user. When the
interferences caused by flaws are rare, the system is
said to be more efficient – from every point of view.
 The frequency of errors and therefore the level of
reliability represent signs of loyalty regarding the
efficiency of the programming system.

References:

[1] - Chillarege R., Kao W., Condit R., "Defect Type

and its Impact on the Growth Curve”,
Proceedings International Conference on
Software Engineering, May 2004;

[2] - Cristescu M., “Modelarea fiabilitatii sisteme-
 lor de programe”, PhD. Thesis, Bucharest, 2003;

[3] - Davis A.M., “Software Requirements: Objects,
Functions, and States”, Prentice-Hall, Saddle
River, New Jersey, 2003;

[4] - Goron S., "Fiabilitatea softului", RISOPRINT
Publishing House, Cluj-Napoca, 1997;

[5] - Ivan I., Saha P., "Quality characteristics of The
Internet Applications", in DIGITAL ECONOMY -
The Proceedings Of The Sixth International
Conference On Economic Informatics, Bucharest,
May 2003;

[6] - Kim S., Clark J.A., and McDermid J. A., "Class
mutation: mutation testing for object-oriented
programs", in Proceedings of the NetObjectDays -
Conference on Object-Oriented Software Systems,
2000;

[7] - Pham H., “Software Reliability”, Springer, 2000;
[8] - Schneidewind N.F., "Life Cycle Core Knowledge

Requirements for Software Reliability
Measurement", The R & M Engineering Journal,
Volume 23 No. 2, June 2003;

[9] - Schneidewind N. F., “Software Quality Control
and Prediction Model for Maintenance”, Annals
of Software Engineering 9, 2000;

[10] - Simao R., and Belchior A., "Quality
Characteristics for Software Components:
Hierarchy and Quality Guides", in Component-
Based Software Quality: Methods and Techniques,
LNCS 2693, pp. 188-211, 2003;

[11] - Szyperski C., "Component Software Beyond
Object-Oriented Programming", Addison-Wesley
and ACM Press, 2002;

[12] - Teodorescu L., Ivan I., "Managementul calităţii
software", INFOREC Publishing House,
Bucharest, 2001.

Proceedings of the 11th WSEAS International Conference on COMPUTERS, Agios Nikolaos, Crete Island, Greece, July 26-28, 2007 351

