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Abstract: - Realistic networks generators are necessary for simulation and performance evaluation of data 

communication systems. Such an aspect has driven the collection and the analysis of data on the Internet 

large-scale structure. The evidence of a power-law behavior of real networks has stimulated the introduction of 

new procedures to generate Internet-like topologies. Assuming a simple loss model for the links, this paper 

analyses how the prediction of the loss probabilities during communications obtained by simulation can be 

influenced by the adoption of a specific topological model for the Internet graph (here, the Waxman or the 

Barabási-Albert model), given a average node distance in terms of hops. 
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1   Introduction 
The design of next generation networks, such as  

Next Generation Internet [1], requires a deep 

understanding of the behavior of large data networks, 

because their topologies have a great influence on 

protocol performance [2,3]. This need stimulated the 

study of the statistical aspects of the Internet topology 

and the birth of many research projects devoted to the 

mapping of nodes of the Internet and connections 

among them, such as the Internet Mapping Project 

[4], Skitter by Cooperative Association for Internet 

Data Analysis (CAIDA) [5] or Rocketfuel [6]. 

Graph-like representations of a large portion of the 

Internet are now available. Recent studies on such 

results, due to M. Faloutsos et. al in 1999 [7], have 

addressed some typical features of many real complex 

systems. Indeed, it has been realized that Internet is a 

scale-free network whose interconnection structure is 

governed by power-law distributions (as in the case of 

the degrees of the nodes, the eigenvalues distribution, 

etc.). This result is in contrast with the distributions  

of Internet-like networks produced by traditional 

generators, based on the Erdıs-Rényi classical 

random graph (henceforth ER) model [8-10], 

including the Waxman generator [11] among others. 

The discovery of the scale-free nature of the 

Internet stimulated the introduction of new 

mathematical models [12-14] reproducing such a 

scale-free behavior. The first and most popular model 

was proposed by A.-L. Barabási and R. Albert 

(henceforth BA) in late 1999 [12]. It is ruled by two 

simple concepts: (i) the graph grows as a consequence 

of the continuous addition of new nodes; (ii) each new 

node connects to the existing vertices with a 

probability proportional to their degree (preferential 

attachment mechanism). Since then, other models 

have been proposed in order to overcome some 

limitations of the ER-based and BA models. For 

further reading Ref. [15] is suggested. 

In [16], we investigated the influence of different 

topological models on communications performance, 

in terms of end-to-end loss probabilities for a given 

link loss model, evaluated in Internet-like networks 

with a given average node degree. We showed that 

end-to-end loss probabilities are dominated by 

distance distribution between node pairs. 

In this paper, we compare Internet-like topologies 

with a given average node distance in terms of hops. 

The paper is organized as follows. In Sect. 2 we 

outline the relevant Internet topology models: ER, 

Waxman and BA models. In Sect. 3 we describe the 

loss model adopted for the links of the synthetic 

Internet-like graphs. In Sect. 4 numerical results are 

presented. 

 
2   Internet topological models 
Internet topologies are generally represented as 

graphs that mime the large-scale characteristics of the 

maps obtained by measurements of the real network. 

As it is well known, Internet is a world-wide network 

composed of computers (or hosts) communicating by 

means of intermediate nodes (or routers), responsible 

to forward properly the information flows, and of 

links physically interconnecting nodes. It is possible 

to represent the network as an undirected graph, 

whose vertices are the routers and whose edges stand 
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for the physical connections between pairs of them: 

this is often referred as the Internet Router (IR) level 

representation. At an higher level, Internet can be 

partitioned into several autonomously administered 

routing domains, named Autonomous Systems (AS),  

that are groups of nodes managed by a common 

administration and sharing routing information. Then, 

another possible representation of Internet is an 

undirected graph in which vertices represent the ASs 

and edges are peering relationships between pairs of 

ASs: this is the so-called AS level representation.  

The traditional approach to model data networks 

relied on the use of classical random graphs, 

introduced by P. Erdıs and A. Rényi in 1959 [8,9] 

(ER model). Based on such a model, the computer 

science community developed some tools to 

reproduce Internet in order to test new protocols 

[11,17]. After the discovery of the scale-free nature of 

Internet [7],  such models and generators became 

inadequate to describe or reproduce large 

Internet-like networks, so the rise of new models has 

been stimulated in order to catch its features and new 

paradigms have been proposed to generate 

representative synthetic networks [18]. 

 

2.1 Static random graphs and the Waxman 

model 
Static random graph models entail a fixed number of 

nodes N throughout the generation process. Typical 

examples of such models are the Erdıs-Rényi and the 

Waxman models. 

Technically speaking, an undirected graph G is a 

pair of sets G = {V, E} where V is the set of vertices 

and E is the set of edges connecting two vertices of V. 

Thus, the size of the graph is |V | = N. 

An ER random graph GN,p can be defined [19] as a 

graph with N nodes where each of the N(N − 1)/2 

possible edges is present, independently from the 

others, with probability p, called connection 

probability, and absent with probability 1 − p. In this 

ensemble, the number of edges M is a binomial 

random variable (r. v.), viz. ( )( 1) / 2,M B N N p−∼ . 

Such a model, also named binomial model, has been 

widely adopted by Internet researchers. 

Defining the degree of a node as the number of 

edges attached to it, the average degree can be easily 

computed as 

  ( 1) ,k p N pN= − ≅  (1) 

where the approximation holds for large N. 

Since real networks (even evolving ones, such as 

the Internet) are characterized by an almost constant 

average degree [15], it is convenient to consider p(N) 

= k /N, derived from eq. (1). If k  < 1, the network is 

composed by isolated subgraphs and hence it can be 

represented as a collection of clusters. On the other 

hand, when k  > 1 a giant cluster, called the giant 

component, emerges which, as N → ∞, incorporates 

almost all nodes, As the average degree approaches 

the critical value k  = 1 an abrupt change in the 

cluster structure occurs. At the corresponding critical 

probability pc(N) = 1/N the random graph changes its 

topology abruptly from a collection of isolated 

components to a single giant cluster. 

One of the main features of a random graph is its 

degree distribution P(k). In an ER graph with N nodes 

and connection probability p it is 

11
( ) (1 ) ,

!

k
k N k k

N k
P k p p e

k k

− − −− 
= − ≅ 
 

 (2) 

where the Poisson approximation holds for large N 

and for constant k . 

 

 

 

 

 

 

 
Figure 1 – Communication path between two generic 

nodes. 

 

Another fundamental subject of investigation in 

graph theory for networks applications  is the 

distribution of the distances among nodes,  or hop 

count distribution for short,  

expressed in terms of probability mass function (pmf) 

as f(n) = Pr{h = n}, where h= d (i,
 
j) is a r. v. 

representing the length of the shortest path connecting 

a pair of randomly selected vertices i and j or, 

equivalently the number, plus 1, of  hops to be 

traversed to reach node j starting from node i, as 

represented in Fig. 1. For ER graphs the average 

distance is [20] 

 
log

.
log

N
h

k
≃  (3) 

It is evident that h  is much smaller than the size 

of the graph N, as a consequence of the small-world 

effect [21], exhibited by many real networks. 

Despite reproducing the small-world behavior, the 

ER model fails to predict some features of Internet 

topology: for instance, it yields a binomial degree 

distribution which decreases exponentially for large N 

and, then, deviates from the heavy-tailed distribution 

observed in Internet. 

 

2.1.1   The Waxman model 
The ER model has inspired the first Internet topology 

generator used for protocol testing, proposed by 

Waxman [11]. According to the Waxman algorithm, 

nodes are (uniformly) randomly distributed on a 
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rectangular coordinate grid and the probability of an 

edge between two vertices i and j is 

 

( , )

( , )

Ed i j

Dp i j e βα
−

=  (4) 

where dE (i, j) is the Euclidean distance from node i to 

j, α and β are parameters in the range (0,1] and D is 

the maximum distance between two vertices. On the 

other hand, there is no edge between i and j with 

probability 1− p(i, j). While the topological structure 

of the graph is not influenced by the value of D 

[17,22], it is highly dependent on the values of α and 

β: α controls directly the number of edges, while β  

rules the influence of the distance between nodes. In 

line with the approach described in [22], it is possible 

to derive in a closed form the average degree k  as a 

function of N, α and β.  

Without loss in generality, we assume that nodes 

are uniformly distributed in a square with size 1 and 

have coordinates (ξ, η). Noting that 

 [ ]
, 1

1
( , )

N

i j

i j

k E p i j
N =

≠

= ∑  (5) 

and [ ]( , )E p i j  is constant , 1,2,...,i j N∀ = , eq. (5) 

can be cast as [ ]( 1) ( , )k N E p i j= −  where 

 

[ ]

2 2( ) ( )
1 1 1 1

2

0 0 0 0

( , ) .

i j i j

i i j jE p i j d d d d e

ξ ξ η η

βα ξ η ξ η

− + −
−

= ∫ ∫ ∫ ∫  

Then, after [22], the average degree of Waxman 

graphs is 

 
1

( 1)
2

k Nα ζ
β

 
= −  

 
, (6)
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Like ER graphs, Waxman graphs yield values of 

h  small with respect to the size of the network 

( logh N∼ ) and hence consistent with the 

small-world effect, but fail to  yield the heavy-tailed 

degree distributions observed in Internet. 

 

2.2 Barabási-Albert model 
Many complex systems, such as Internet, show 

degree distributions that are not peaked around a 

typical value, the average degree k , but instead 

highly skewed (scale-free behavior). The first model 

for computer networks producing graphs with 

power-law degree distributions was proposed by 

A.-L. Barabási and R. Albert in 1999 [12], who 

claimed that the network is an open system growing 

with time,  and that the probability that  two nodes are 

connected depends on the degree of the nodes. It 

means that new edges are not placed at random but 

tend to connect to vertices that already have a large 

degree, respecting the paradigm rich-get-richer [23]. 

The algorithm inside Barabási-Albert (BA) models 

can be summarized as follows. 

The network starts at time t0 = 0 with a small 

number of nodes m0. At every time unit a new vertex 

with m edges (m < m0) is added and it is connected to 

m different nodes already present in the system.  The 

edges of the new vertex are connected to the i-th 

already existing node with a probability Π(ki(t)) 

proportional to its degree ki(t) at time t, such that 

 ( )( )
( )

( )
.

i

i

jj

k t
k t

k t
Π =

∑
 (7) 

After t time units the BA procedure provides a 

graph Gm
(N)

 with N = t + m0 nodes and mt edges, 

whose average degree has  a simple expression, i.e. it 

is 

 2 ,k m≅  (8) 

where 0N m≫  has been considered. Since m is an 

integer, eq. (8) implies that k  can have integer 

values. BA graphs have a power-law degree 

distribution P(k) [12] 

 ( ) ,P k k
γ−

∼  (9) 

where γ = 3, similar to the degree distribution 

measured in Internet (in real networks γ ≅ 2.1 [15]). 

The power-law distribution implies that the 

probability of finding vertices with a very large 

degree (hub) is not negligible in the BA graph. 

BA graphs also exhibit the small-world effect. 

Indeed, it has been proved rigorously [24] that its 

diameter, namely its maximum distance in the shortest 

path sense, shows different asymptotical behaviours , 

in the limit of large N, depending on the value of the 

parameter m. The average distance is supposed to 

behave in similar way. In particular, in BA graphs 

with m = 1, the average distance is, as N → ∞, 

 logh N∼  

like ER graphs. Instead for m ≥ 2 it is asymptotically 

 
log

.
log log

N
h

N
∼  (10) 

3   Loss model 
The hop count distribution of the Internet reflects the 
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interconnection structure among routers and hence 

affects significantly  the end-to-end communication 

performance. Thus, since every model proposed to 

represent Internet provides, in principle, a different 

distribution of the distance among nodes, the 

predicted performance may depend on the adopted 

topological model of the network. To shed some light 

on this subject, we carried on an evaluation of packet 

loss probabilities under different Internet-like 

topologies, given the loss model of single links.  

Every communication between two end-points 

involves a path set up by the routing protocols, 

generally aiming to minimize the number of hops 

packets have to traverse to reach the destination. 

Although some intra-ASs routing policies might 

inflate the shortest paths, the distance, h, between 

source and destination can be assumed to be the 

length of one of the shortest paths between the two 

end-points [25] and can be considered fixed in time. 

Further, we introduce a simple link loss model, in 

which every packet is lost on the n-th link, 

independently of the others, with probability 

 [ ]0, .n maxUλ λ∼  (11) 

Such a model introduces some relevant 

simplifications with respect to reality, since 

correlations are neglected both in space (from link to 

link at a given time) and in time (at different times on 

one link). The end-to-end packet loss probability L 

can thus be expressed as 

 ( )
1

1 1
h

n

n

L λ
=

= − −∏  (12) 

where λn is the loss probability of the n-th link in the 

path, and where h , as above, is a r. v. representing the 

shortest path length and conveying the influence of 

network topology on the packet loss rate. In the 

simulations, λmax = 10
-2

 in order to match to the order 

of magnitude of the maximum loss rate typically 

encountered  inside Internet [26,27]. 

 

4   Numerical results 
In order to assess the influence of network topology 

on performance prediction, representative numerical 

experiments have been carried by NS-2 on synthetic 

networks (according to different models) provided by 

BRITE (Boston university Representative Internet 

Topology gEnerator) [28]. In our study, network 

topologies have been produced by BRITE according 

to two algorithms outlined in Sect. 2: the BA model 

[12] and the Waxman model [11]. 

A Constant Bit Rate (CBR) traffic flow 

(representative of real-time applications, like VoIP) 

between two randomly selected nodes (connected by 

a communication path) is added to the network 

scenario, in order to compute the end-to-end packet 

loss probability L as the fraction of packets lost  

among those transmitted. The throughput of the CBR 

source is set to 100 kbit/sec, in order to match the 

order of magnitude of typical VoIP communications. 

The link loss model outlined in previous section has 

been implemented via the NS-2 Error Model class 

that allows to set the loss rate of every link according 

to eq. (11). In order to avoid other causes of packet 

loss, in every simulation no interfering traffic is 

present in the network and the capacity of every link 

is set to 10 Mbit/sec, a value much greater than that 

required by the CBR traffic flow. The duration of 

each NS-2 simulation has been established so that the 

CBR source send 10
5
 packets to the destination. For 

each topological model,  5000 experiments have been 

performed via Monte Carlo techniques in graphs with 

the same size (N = 1000 vertices).  

In [16], we considered graphs with the same 

average degree ( 4k = ), showing that the considered 

graphs,  although with the same size N and the same 

average degree k , yielded different packet loss 

probabilities. In particular, performances predicted on 

Waxman networks seem to be poorer than  those 

predicted on  BA networks in terms of average loss 

rates, probably due to a different average hop count 

induced by this two models. Then, it is meaningful to 

analyze the behavior of the graph models when they 

show the same h . As in [16], the m parameter in (8) 

was set to the value m = 2, providing for a BA graph 

of N=1000 nodes an average hop count  4.61BAh = . 

For Waxman graphs,  we selected the pair (α,β), by 

means of Fig. 2, providing Waxman graphs with 

4.61W BAh h= = . We recall that Fig. 2 (see [16]) 

represents the contour plots in (α,β) for different 

values of k  and h  obtained for Waxman graphs 

with N = 1000 nodes. In this case, a possible choice 

for the values of the parameters is α = 0.012 and β = 

0.34, while D = 1000 2 . The corresponding 

empirical pmf f(n) is shown in Fig. 3, in which, for 

comparison, the hop count for the BA model with m = 

2 is reported. 

The measured average loss probability is 0.23L =  

for both models, since / 2maxL hλ= , while the 

Complementary Cumulative Distribution Function 

(CCDF) { }( ) PrLF x L x= >  of the loss probabilities 

under each model are reported in Fig. 4. The large 

overlap of the two CCDF’s confirms that h  plays a 

fundamental role in determining the loss 

probabilities. 

As the Quantile–Quantile Plot (Fig. 5) 

qualitatively suggests, both empirical distributions 

are fitted by a Weibull CCDF [29] 
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Figure 2 – Contour plots of different values of k  

(solid lines) and h  (dotted lines) in Waxman graphs 

with N = 1000 nodes and 1000 2D =  in a fraction of 

the parameter space (α,β). 1, 2, 4,8k = , 4,5,10h =  

are reported [16]. 

 

( ); , , 0
bax

F x a b e x
−= ≥ ,        (13) 

even if the maximum likelihood estimation from data 

of the parameters in eq. (13) provides slightly 

different values (a = 1.0⋅10
5
 and b = 3.1 in Waxman 

graphs, while a = 2.2⋅10
5 
 and b = 3.4 in BA graphs). 

 

5   Conclusion 
The investigation was motivated by the fact that 

the various topological models of Internet yield  

different  degree  distributions, e.g. P(k) decays 

exponentially for Waxman model while decays as a 

power-law for BA model. Under the assumed 

Bernoulli link loss model, our numerical experiments 

(performed by means of NS-2 network simulator on 

graphs generated by BRITE package with N = 1000) 

support the following conclusions: (i) despite the said 

discrepancy, both end-to-end loss probabilities are 

fitted by a Weibull distribution, even if graph models 

show different average distance [16]; (ii) when both 

models have the same average hop count Waxman 

and BA graphs have comparable behavior in terms of 

end-to-end loss probability. This outcome suggests 

that, in order to predict the end-to-end loss probability 

in real networks or else in generating synthetic 

networks, the average hop count among nodes plays a 

central role. 

Even if the assumed model for the link loss is far from 

representing the loss of the real Internet links, the 

methods presented in this paper could be applied 

under more realistic loss models, accounting for the 

burstiness and the long-range correlation of the loss 

process observed in real operation of Internet. 
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Figure 3 – Empirical pmfs of the hop count f(n) in 

Waxman networks with α = 0.012, β = 0.34 and 

1000 2D =  (circles and dashed lines) and BA 

networks with m = 2 (triangles and dot-dashed lines). 

All experiments are carried out in graphs with N = 

1000 vertices. 
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Figure 4 – Complementary Cumulative Distribution 

function ( )LF x  of the end-to-end loss probability in 

BA and Waxman networks with the same 4.61h = . 
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