
Improving SVM Classifiers Training Using Artificial samples

A. LABED, M. NADIL & D. E. DAOUADI

Department of Computer Science
Polytechnic School of Bordj El Bahri

Bp 17 Bordj El Bahri Algiers
Algeria

Abstract: - Estimating the generalization capability is one of the most important problems in supervised
learning. That is why, various generalization error estimators have been proposed in the literature.

In this paper we propose an approach based on randomly generated objects to enhance the quality of
training step of a standard SVM multi-class classifier and consequently try to reduce its generalization error.
The idea is to generate artificial test samples which help automatic classifiers learn from their mistakes by
reintroducing the misclassified examples in training set. But adding misclassified examples to the training set
will induce a more complex quadratic program on which the decision rule is based. To overcome this
complexity, while additional learning vectors are introduced, we integrated the idea of incremental training to
our method.

Key-Words: - SVM, Retraining, Generalization error, Artificial samples, Incremental training.

1 Introduction
A classifier is considered to be good or not

accordingly to its ability to generalize. In practice we
can obtain classifiers that have very low empirical
errors, but may give unacceptable errors when used to
classify new data (examples not seen during the
training phase).

The SVM (binary case) technique is based on the
structural risk minimization using the Vapnik and
Chervonenkis dimension. Theoretically speaking,
SVM classifiers present some robustness due to the
margin maximization. This margin allows classifying a
new object with more confidence.

It has become common to say that the popular
support vector machines (SVM) classifiers have good
generalization when applied to any kind of dataset
[10]. But, in many cases SVMs do not give the best
performances especially when applied to datasets with
thousands of objects or data sets with few training
examples.

The SVM (binary case) classifiers are based on the
structural risk minimization using the Vapnik and
Chervonenkis dimension. They rely on margin
maximization [8] and hence present some robustness.

Despite its theoretical robustness, in practice an
SVM classifier does not always give low
generalization errors. This is particularly true, when

the training sample size is small compared to the
number of features (sub-training) or when training is
based on a set of objects that does not contain some
important individuals (hidden information). So, if they
are further submitted to the classifier they will be
misclassified.
It is clear that the performances of classifiers depend
crucially on the ability of the training sample to
represent the entire population of objects.
 The criterion that is often used to appreciate
the quality of a classifier is the generalization error.
Unfortunately it is very hard to find an exact analytical
expression for this error, given the training data, and
use standard optimization techniques to minimize it.

Researchers proposed solutions to the weak
generalization problem of classifiers for which the
training is based on samples of small size, by
techniques like regularization and noise injection [9].
Our heuristic is similar in spirit to the combination of
two ideas:

a- The idea of noise injection in the sense that we
randomly generate data to be tested from a
wider distribution;

b- We focus on misclassified objects by
reintroducing them in the training dataset.

But these two ideas were exploited in a slightly
different way in our work. Explicitly, we use the
available sample to train our classifier, and then

Proceedings of the 11th WSEAS International Conference on COMPUTERS, Agios Nikolaos, Crete Island, Greece, July 26-28, 2007 140

progressively generate samples to test it. The
misclassified objects are added to the previous training
set and training step is repeated. The goal of this
retraining is to enlarge the variation specter of the
training data. So, a larger number of practical
situations will be taken into account in the learning
phase. We have called the ‘training-test-retraining’
process, ‘progressive learning’. It is in some way
similar to the natural learning of a child.

Other researchers gave estimates for upper

bound on the generalization error to give some
confidence to the future users of such classifiers [3].
So they are sure that in the worst cases they risk to
have very low errors with high probabilities. Others
tried to conduct statistical studies on the evolution of
this error and constructed the receiver operator curves
(ROC) to show the robustness of classifiers.
In our work we focus on training enrichment to
overcome under-training and hidden information
problems. More explicitly, we intend to allow training
become as general as possible, so that our SVM
classifier will be able to minimize effects of causes
leading to a weak generalization.

After the selection of a good model accordingly to
some criterion, we begin a retraining step. It is based
on artificial data (randomly generated samples). The
idea is that a larger number of practical situations will
be taken into account in the learning phase.
Before giving more details about this approach, we
will give the main sources of bad generalization.

2 Sources of weak generalization
 SVM classifiers are based on the construction
of a hyperplane that separates the objects of two
classes: negative objects labelled by yi = -1 and
positive objects labelled by yi = +1. The equation of
the hyperplane is: wx + b = 0. (1)
The vector w and the constant b are chosen such that
they maximize the margin.
In the general case we have to solve the quadratic
program bellow:

()jijij
N

ji
i

N

i
iD xxkyyLMax ,

2
1

1,1
ααα ∑−∑=

==
 (2)

Subject to Ci ≤≤ α0 (3)

 (4) 0
1

=∑
=

i
N

i
i yα

 The αi’s are Lagrange multipliers, C is the
regularization parameter and K(.,.) is a kernel function
(linear, polynomial or radial basis function: RBF).

The decision function for the classifier is then:

() () ⎟
⎠
⎞

⎜
⎝
⎛
∑ +=
=

N

i
iii bxxKyxf

1
,sgn α (5)

2.1 Model selection

The choice of parameter C in all cases (linear,
polynomial and RBF kernels) and the type of kernel
with its own parameters is a crucial step in the
construction of an SVM classifier. The performance of
SVM classifiers is very sensitive to the model’s
parameters. Indeed, not only changing the kernel will
influence the result but simply changing the kernel’s
parameters will induce great variations in the results.
So, in our work, before using the classifier to assign
new data, we have to be sure that model parameters
have been chosen in a way that assure the lowest
generalization error.

2.2 Undertraining

If the training set is a sample of relatively small
size, compared to the number of features, it can be a
source of high generalization error. Training SVM
classifier using this sample can lead to what is called
under training.

2.3 Hidden information

The database used for the construction of a
classifier may not contain some important data that
should have significantly influenced its decision
function. If these data where present, they should have
been taken as support vectors. These data are called
hidden information. If their number is sufficiently
high, we can say that our sample is information poor.
Consequently, the classifier will have a bad
generalization.

To reduce the generalization error, solutions must
be found for solving these three problems.
Our approach focuses on the two last problems.

3 Solutions for weak generalization

3.1 Model selection

Until now there is no method that helps to
systematically choose the parameters of the model.
Indeed many researchers in the field of automatic
training are still working on choice of parameters that
allow the classifier to well behave when facing new
individuals. The best way to choose these parameters
is based on an estimation of the generalization error
given the training data. The most common techniques
for estimating this error are based on cross-validation.

Proceedings of the 11th WSEAS International Conference on COMPUTERS, Agios Nikolaos, Crete Island, Greece, July 26-28, 2007 141

However, even if this error is relatively high, no
satisfactory solution is proposed for undertraining and
hidden information.

 The cross-validation can be described as fellows:
 Given a training set

S= () () (){ } , ,........, , , , 2211 yxyxyx NN ,

i=1,…,N and

l
i Rx ∈

{ }1±∈y i .

Subdivide this set into M subsets of approximately
equal sizes.

For every subset
Perform training using (M-1) subsets.
Estimate the error with the remaining subset.
End for

Calculate the average error on the M estimations.
End.

If M is chosen such that M = N, the cross-validation is
called Leave one out (Loo) technique.

Estimating the generalization error this way, is
time consuming because we would need to construct N
classifiers. Jaakkola & Hausler [1] proved a theorem
that gives an upper bound for the estimate of the
generalization error by only constructing one SVM
classifier.
 For the SVM classifier, the generalization
error estimated by N cross-validations (loo) is
bounded by:

()∑ ∑
= ≠ ⎟

⎟

⎠

⎞

⎜
⎜

⎝

⎛
+⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛N

i
jiji xxkyyN 1 ij

j b , - STEP 1 α (1)

The functions STEP count the number of objects that
are misclassified using the prediction model.
 One interesting method that helps selecting
good parameters for SVMs is described by Chih-Jen
Lin [2]. It consists in first, choosing the kernel (linear,
polynomial or RBF) then defining intervals of
variation for its parameters. For the polynomial kernel
the degree is often taken in the set
 A = {1, 2, 3, 4, 5, 6, 7}.
For the RBF, the values of the set:
{0.00025, 0.0005, 0.001, 0.002, 0.004, 0.008, 0.016,
0.032, 0.064, 0.128, 0.256, 0.512, 1.024, 2.048} were

tried for the parameter 22
1
σ

γ = .

The parameter C (for all the kernels) was taken in the
set:
{1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024}.

For every model, we estimated the upper bound on the
generalization error (UGE) using formula (1) and
selected the model that produced the lowest bound.

3.2 Undertraining and hidden information

The first difficulty in classification is to find a
representative database to be used to train a machine
(classifier). Once these data are collected, they are
subdivided into two parts: one to extract the
parameters of the classifier and the other to test its
performances.

The main idea of our work is to, first augment
the training set by adding the misclassified objects of
the test sample and then retrain the classifier. So we
make the machine learns from its mistakes.
Unfortunately, in practice, data are often rare and
expensive and the available database does not suffice
to repeat the training-test process many times. To
obtain a classifier that generalizes well even though
based, in its training, on a sample of small size, we
generate artificial samples to enrich the training.
Hence, the data used to train the machine will cover a
larger range of variation and take account of more
practical situations.

We assume that a tolerated error (Tol_Err) is
given. So after training, we perform some tests and
consider the training to be satisfactory if the error
produced by these tests is lower than Tol_Err.

The main steps of our approach are given bellow:
Step 1: Subdivide the data into three parts: One for

training, the second, to have an idea its
generalization, and the third as a reference for
measuring the improvement induced by our
approach.

Step 2: Train the SVM and estimate the UGE.
Step 3: Calculate the rate of misclassified objects of

the second test sample.
Step 4: a) Classify the objects of the first test sample.

If the rate of misclassified objects is greater
than the Tol_err, add these objects to the
SVMs of the previous step and repeat step 2.
b) Recalculate the rate of misclassified objects

of the second test sample. If this rate is
lower than the tolerated error, stop.

c) Else, go to step 5.
Step 5: a) Generate artificial data and classify them

(according to the model obtained for the last
training).

b) If their classification error is greater than
the Tol_Err, then add misclassified data to the
SVMs of previous step and repeat step 2.

Proceedings of the 11th WSEAS International Conference on COMPUTERS, Agios Nikolaos, Crete Island, Greece, July 26-28, 2007 142

c) Recalculate the classification error for
reference sample.
If the new error is lower than Tol_Err, stop
training.
d) Else, generate a new sample and repeat sub
steps (b) and (c).

But before implementing our idea, we had to

answer two questions:
1. According to which distribution we can generate the

artificial samples?
2. It may happen that after a few failures, the training

sample size becomes very high and the associated
quadratic program difficult to solve. So, how to
speed the construction of SVMs?

For the first, we try to fit the data to appropriate
theoretical distributions and generate samples from
these distributions. In our work we only generated
samples from Gaussian distributions.
To overcome the second problem we exploited the
idea of incremental learning. So, at each step, the new
data are learned recursively by only augmenting them
with the support vectors of the previous step [11]. The
underlying idea is that the support vectors are able to
represent all the relevant information contained in the
whole sample.

The main steps of incremental learning algorithm
can be summarized as fellows:

1- Subdivide the entire input set TR into k
subsets DS1, DS2,…,DSk.

2- Initialize the learning set TS to DS1.
3- Train the SVM on TS and save the support

vectors SV1.
4- For i =1,…k-1, repeat:

(a) TS = SVi ∪ DSi+1

 (b) Train the SVM on TS and save SVi+1.

4 Experiments
 To show the effectiveness of our heuristic, we
used three datasets:
a. Quality of wines: these 178 objects subdivided (at
random) into: 98 instances for training, 40 for a first
test and 40 for a second test sample.
b. Iris dataset: the 150 individuals subdivided into: 90
instances (30 for each class) for training, 30 (10 for
each class) for the first test and 30 for the second.
c. Fingerprints dataset: 68 fingerprints taken from four
different classes were obtained by applying a Radon
transform followed by a PCA transform on the original
pixels. We obtained a dataset of 68 objects described
by 67 features for training, 100 for the first test and
100 for the second.

The second test sample was used as a
reference sample to compare the error of a standard
SVM and that that the retrained SVM.

Our implementation in visual C++ was based
on the sequential minimal optimization (SMO)
algorithm. For the multi-class case the one against all
strategy has been used.

For the first database, we succeeded to
correcly classify the entire training individuals using
linear kernels with the parameters: C = 512 for the first
hyperplane, C = 4 for the second and C = 8 for the
third. The UGE was 11.22%. This model is then used
to estimate the class of the first test sample
individuals. All the objects were assigned to the
correct classes. But the same model gave an error of
2.50% (one misclassified individual) on the second
test sample. So, we generated artificial samples of 100
individuals (34 from the first class, 33 from the second
and 33 from the third). For the first artificial sample,
we obtained two misclassified individuals (2% error).
These two objects were added to the training set and
the SVM is retrained using the same model (C = 512
for the first hyperplane, C = 4 for the second and C = 8
for the third). UGE estimate, for the new model, is
15% and applying the new SVM to the second test
sample gave a 0% error. This shows that using our
approach, we were able to reduce the error (from 2.5%
to 0%).
 For the second data set, linear kernels (with
any value of C) allowed to separate all the training
objects of class1 from the other training objects (from
class2 and class3). For all the tried models (all the
values of parameter C), the UGE estimate is 2.22%. So
we chose the model with the lowest C (C=1). But
linear and polynomial kernels were inappropriate to
separate the second and the third hyperplanes. So,
RBF kernels were used. For the second hyperplane,
the minimal UGE was 4% and obtained with C = 2
and γ =1.024, while a minimal UGE of 6.88% was
obtained for the third with the parameters C =128 and
γ = 0.256. The tests, with this model, produced a
classification error of 6.66% (two misclassified
objects) on the reference sample and 3.33% (one
misclassified object) on the first test sample. So, we
reintroduced the misclassified object of the first
sample in the training set and retrained the SVM with
augmented sample, using the same parameters of the
previous model.

UGE estimate after retraining was 6.95% and
the classification error over the second test sample
6.66% (two misclassified data). We can then notice
that retraining the SVM by adding the misclassified
data of the first test sample did not reduce the

Proceedings of the 11th WSEAS International Conference on COMPUTERS, Agios Nikolaos, Crete Island, Greece, July 26-28, 2007 143

classification error over the second test sample. That is
why artificial data were generated. The first sample (of
100 objects) gave five misclassified objects.
The resulting model gave 3.33% error (one
misclassified object) on the reference sample, which is
lower than that obtained after the previous retraining
(6.66%). A second artificial sample has been
generated, for which we obtained three misclassified
objects. With this last retraining we succeeded to
classify correctly all the elements of the reference
sample. Again, this shows that, with our retraining
process, we reduced the error for the iris data set.

The third experiment illustrates the case of
training dataset of small size (68 objects) compared to
the number of features (67 features). Using our
features, we were able to linearly separate the four
classes. The lowest errors were obtained with the same
parameter C which was 100 for the four hyperplanes.
The empirical error for the initial training was zero.
The generalization error estimates were: 32% for the
first Hyperplane, 36% for the second, 36% for the
third and 30% for the fourth. In this case the SVM
classifier gave a bad generalization. This result was
also true for the reference sample on which we
initially obtained a 20% error. Applying our heuristic
to this data, we succeeded to decrease this error to
about 10% after having generated 9 samples of 100
objects (25 objects from each class).

5 Conclusions
The tests performed on the three data sets, have

shown that we were able to ameliorate the scores of
standard SVM multi-class classifiers. Indeed, this has
been proven for two different kinds of data: linearly
separable data (first and third data sets) and not
linearly separable data (second data set).

We selected optimal models (parameters that
gave the lowest UGE); to be sure that improvement
did not result from randomness of the SMO algorithm,
but from training enhancement based on artificial data.

Finally, we can then assert that training a
standard SVM, using our approach, reinforces training
and helps this classifier generalize better.

References:

[1] T. S. Jaakkola, D. Haussler, ''Probabilistic Kernel

Regression Models '', Tech. Report, Department of
Computer Science, University of California 1999.

[2] J. H. Lee and C.J. Lin., ''Automatic Model
Selection for SVMs '', Tech. Report, Department of

Computer Science and Information Engineering,
National Taiwan University, 2000.

[3] M. Sugiyama, Y. Okabe and H. Ogawa,
''Perturbation Analysis of a Generalization Error
Estimator'', Neural Information Processing - Letters
and Reviews, Vol.2, No.2, February 2004.

[4] R. Meir and T. Zhang, ''Generalization Error
Bounds for Bayesian Mixture Algorithms'', JMLR,
Vol. 4, 2003, pp. 839-860.

[5] S. Mannor and N. Shimkin, ''A Geometric
Approach to Multi-Criterion Reinforcement
Learning'', JMLR 5 (2004) 325-360.

[6] M. Anthony, ''Generalization Error Bounds for
Threshold Decision Lists'', JMLR, vol 5, 2004,
pp 189–217.

[7] J.C. Platt, ``Fast Training of Support Vector
Machines using Sequential Minimal Optimization,''
Advances in Kernel Methods - Support Vector
Learning, MIT Press, 1999, pp. 185-208.

[8] V.N. Vapnik, ``The Nature of Statistical Learning
Theory '' 2nd edition, Springer, 2000.

[9] M. Skurichina '' stabilizing weak Classifiers '',
PhD Thesis, TUDelft, 2001.

[10] L. Wolf & I. Martin, '' Robust Boosting For
Learning from Few Examples '', Proceedings of
CVPR’05, 2005.

[11] J. Langford and D. McAllester, J. Langford
and D. McAllester, ''Computable Shell
Decomposition Bounds'', JMLR, vol 5, 2004, pp
529-547.

Proceedings of the 11th WSEAS International Conference on COMPUTERS, Agios Nikolaos, Crete Island, Greece, July 26-28, 2007 144

	 SVM classifiers are based on the construction of a hyperplane that separates the objects of two classes: negative objects labelled by yi = -1 and positive objects labelled by yi = +1. The equation of the hyperplane is: wx + b = 0. (1)
	2.1 Model selection
	2.2 Undertraining
	
	3.1 Model selection
	 The cross-validation can be described as fellows:

	References:

