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Abstract: - Parallel computing becomes common tool to accelerate long-lasting electromagnetic computations. In some 

cases their realization does not bring an expecting gain. In this paper the authors present the results of the simulations 

from application created in order to show selected anomalies in parallel computing. The way of parallel system 

implementation is presented on the basic of direct graph model with the set of precedence constraints. The Graham’s 

anomalies are discussed during optimization tasks scheduling issue, towards makespan criterion. The research was 

focused on three most frequently applied cases during acceleration the computations i.e. shortened tasks times 

execution, add additional computational power and reduction of selected precedence constraints. All phenomena are 

discussed and presented with the usage of Gantt’s charts. 
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1   Introduction 
Dynamic development of numerical algorithms  and 

information technology enabled precisely analysis and 

implementation many physical phenomena using 

adequately mathematical models. One of these issue is 

analysis of dynamics of electromagnetic devices in 

application to automatics and robotics. The devices are 

modeled using 3D distributed parameters systems. After 

discretisation of partial or integral equations that 

describe electromagnetic phenomena, a large and sparse 

system of equations are obtained [10-13].  

The computation performs execution many 

mathematical operations. In most cases it make possible 

to decrease the time of calculation. Then very often is 

made an effort to realise multi-processors system. 

Fortunately, some algorithms can be executed 

simultaneously on principle of parallel computation, 

what in most cases considerable allows to cut down the 

time of calculation. 

This paper presents Graham’s anomalies 

phenomenon as a menace that appears during 

fragmentation and parallel code of the application. There 

is discussed and presented a general problem in 

scheduling theory called the minimum makespan 

scheduling. 

 

 

2   Model of An Electromagnetic System 

Using the magnetic vector potential A and electric 

scalar potential V as electromagnetic field variables, the 

electric field intensity E in conducting region (ΩΩΩΩC) and 

magnetic flux density B in conducting and non-

conducting region (ΩΩΩΩC ∪ ΩΩΩΩN) is defined as [11]: 
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In this case, the boundary value problem in terms of 

potentials is expressed as follows:  
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where µ is a permeability, σ represents conductivity, v 

represents velocity of movable armature and j(t) current 

density of the thin coil. If voltage excitation is given, the 

electric circuit system of equations expressed in term of 

magnetic vector potential must be considered as [13]:  
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For n-phase voltage forced system above equations 

are expressed by matrix of dynamic impedances. 

Discrete form of (7) can be defined as bellow:  
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Global impedance matrix includes own impedances iiZ  

and mutual impedance kjjk ZZ = . For 1I j = A (j=1,2, 

…, n) and for 0I jk =≠  are performed calculations for 

matrix of impedance Z, next the current vector I in both 

coils are calculated from formulation:  

 UZI
1−

=    (8) 

when a voltage vector U is known. Calculation of the 

force is performed using the Maxwell’s stress tensor 

method. The force density is given by following 

formula: 

 Tf ⋅∇=    (9) 

where T denotes modified Maxwell’s stress tensor [9] 

proposed as follows (10): 

Then total force is defined  

 dΩfF ∫
Ω

=    (11) 

Motion problem is solved by sequentially coupled model 

with time step verification according to the fixed grid 

distance in motion direction [9]. Choosing the 

displacement and velocity as state of 1-DOF mechanical 

motion, the equation is solved by recurrance Euler’s 

algorithm in state space form as a system of first order 

differential equations [13]:  
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where x represents displacement and v represents 

velocity of movable armature used in boundary value 

equations (3) - (4). 
 

 

3   Numerical realisation 
For given voltage value an iterative procedure includes 

calculation of equation (6) in discrete form:   
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where own and mutual impedances are calculated as: 
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and right side of equation (13) performs: 
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In equations (14)-(15) exists vector potential a for one-

ampere test. In the last equation (14) is given potential 
w

a  which takes eddy current into consideration.   

In second step the boundary equation (3) – (4) in integral 

form are solved by a finite element method with linear 

shape functions of the potentials.  

The global matrix system iterative procedure of the 

system becomes [13]: 
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In above equations z represents vector of unknown of 

magnetic vector potential A, y  represents vector of 

unknown electric scalar potential V and r is a vector of 

current density j(t). Matrices C, D, E, F, G and H are 

obtained as result of discretisation of the following 

formulations:  
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Next r as result of discretisation ∫
Ω

dΩ)t(j . Obtained 

system of equation is non-symmetric. Matrix C is non-

symmetric and diagonally dominant, D is a diagonal 

matrix. Matrix G is symmetric. Coefficients of C, D, E, 

F, G, H depends on materials description and type of 

discretisation. Included in formulations (5) and (6) terms 

( )( )∫
Ω

×∇× dΩσ Av , and ( )( )∫ ×∇×−
S

dSσ Av  produces 

non-symmetric coefficients in global matrix structure. 

The magnetic vector potential A and electric scalar 

potential V are calculated by step by step computation 

process of equation system (16). For this type of 

computation the conjugate gradient method with 

preconditioner called BiCG is worked up [13]. 

Total force influencing on movable armature is obtained 
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from (11)-(13) as a combination of calculated potentials 

A, V. The method is widely described in [9]. Then is 

solving the discrete state space equation of mechanical 

system to obtain velocity and displacement.  

The differential equation of a motion in discrete form 
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is successively solved in each iterative step i∆t  to get 

the armature displacement x.  
 

 

4   Model Definition, Notation and  

     Preliminaries 
The calculating cluster of  four PC computers with 

Linux operating system is used to solve presented 

problem. Linux includes BSD (Berkeley Software 

Distribution) socket interface, which is the standard 

network communication protocol. TCP/IP connections 

as well as communication between processors in Unix 

domain are used. Hardware cluster consists of: one Intel 

Pentium IV 1.8 GHz with 1.5 GB RAM system memory 

running as client application and two Intel Pentium IV 

1.8 GHz 256 MB as server applications. Let’s describe 

matrix 
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 from (16) as M and right side 

of (16) as vector b. The idea of parallel calculation is to 

cut matrix A and vector b for three fragments 

simultaneously keeping non zero extortion in all new 

part of vector b. 

For the sake of  individuality of each  solving 

problem and to optimise load balancing between cluster 

nodes the expert’s knowledge was used by giving cut 

dimensions.  The total space ΩΩΩΩ is split into for three 

calculating subspace (ΩΩΩΩ∈ΩΩΩΩ1 ∪ ΩΩΩΩ2 ∪ ΩΩΩΩ3) taking 

consideration boundary conditions on division area into 

account. Algorithm of solving field issue is divided on 

parallel field calculation in each from three domains. 
 

 
Fig.1 The model space ΩΩΩΩ split into three parts   

 

In this case we get three systems of equations type 

ANxN=bN solving by PCG algorithm on N node. 

Continuity of field functions at cutting area has to be 

kept and internal boundary condition at data divide and 

integrate should be retained. Then the potentials of next 

cutted walls in calculate subspace have to accept the 

same values. 

 

 
Fig.2 The way of two subspace marge 

 

On ΠN⊂ΩN and ΠN+1⊂ΩN+1 areas must occur following 

relation: 

M
∀ xN,M=xN+1,M  where xN∈ΠN  and  xN+1∈ΠN+1    (18) 

 

Message passing quite often has application in matrix 

calculus, where individual processors execute 

computation on selected part of main matrix. In the 

discussed approach N nodes solve ΩΩΩΩN part of space ΩΩΩΩ. If 

stopping criteria in the iterative algorithm are achieved 

on each servers then the results are sent to a client 

application. Next they are integrated. The whole 

algorithm is recurred till the maximal number of 

iteration or stopping criteria is reached. 

To realise the communication in the cluster 

architecture the authors used sockets service. It is 

implemented at kernel in systems type Unix and 

execution the operations is enable using system’s 

functions similarly to files. Stream sockets 

(SOCK_STREAK) use TCP protocol, which main 

virtues are: sequencing, error control and connection-

orient. 
 

 

5   Problem Statement 
The authors created an application, which allows to 

detect potential anomalies on the basis of structure of 

tasks’ schedule graph (Fig. 1). As an example specific 

model is presented. The Graham’s anomalies towards 

minimum makespan scheduling are studied. Each 

parallel system could be independently applied for 

resources [6].  

It is shown parallel system in MPI (ang. Message 

Passing Interaface) technology using three nodes cluster 

with memory system concentrated. The system was 

made up of tasks set },...,,{ 21 nFFFF = . Each task 

could be executed on one at the most machine [8]. The 

simulated cluster system is made of three parallel 

machines },,{ 321 MMM=Μ  that each could calculated 

simultaneously any but only one task from set F [1]. 
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Fig.3 Graham anomalies simulator 

 

The authors focused one’s attention on set 

nonsplitable tasks, because these algorithms are used 

frequently in electromagnetic field calculation. In 

general, the MPI system is a set that dependents on tasks 

determined precedence constraints. Between F1 and F2 

tasks is precedence constraint (notation F1p F2) when F1 

has to be done before beginning task F2 calculation. It is 

necessary to take into consideration that binary relation 

p partially order set F [4].  

In the application the relation p  is presented in the 

form of direct acyclic graph G(V,E) with node 

convention. In this model the nodes (V) answer a task 

and the edges (E) describes precedence constraints 

[2][3]. The authors’ application can models tasks 

schedule such as portray three Graham’s anomalies on 

base modification the original system. User has to only 

precise how many machines he wants to use in cluster, 

parallel algorithms execution times and precedence is 

constraints.  

The graph was implemented as neighborhood matrix 

V×V dimension and the memory complexity this 

algorithm is O(V2) [7]. In the aim to simulate Graham’s 

anomalies it was necessary to appropriately match tasks 

execution time vector [ ]τ ij , where τ ij is time of 

execution task iF  on machine M j . The parallel 

computation is made using set three identical machines: 

∀ =
i

ij iτ τ  ,  j=1,2,3  i=1,2,..,9.                  (1) 

The problem is to find optimal tasks schedule with 

assurance all tasks execution which meets all imposed 

constraints in schedule length (makespan) criterion [5]: 

C C
i

imax max{ }=                               (2) 

where : Ci is completion time task iF , FFi ∈  

As the results the optimal schedule is presented in 

graphical way using Gantt chart. Next chart illustrated 

individual Graham’s anomalies on the basis of research 

modifications. 

4   The Tasks Clustering Schedules 

Individual tasks should be identify with parallel 

opetations in electromagnetic calculation, where: 

F1- socket combination and opening, F2- data transfer to 

server1, F3- data transfer to server2, F4- server1 

computation, F5- server2 computation, F6- client 

computation, F7- test of data transfer correctness, F8- 

marge the results, F9- verification of cluster cohesion.  

Knowing executions times all tasks and precedence 

constraints the issue is solved and optimal schedule is 

found. In the basic model time Cmax amount 48 second. 

Solution is presented at Gantt chart (Figure 4). 

 

τi [s] 2 8 8 30 30 30 6 9 10 

Fi 1 2 3 4 5 6 7 8 9 

Table 1 The times of the tasks execution 

p  : F1p  F9 ;  F2p  F4 ;  F3p  F5 ; F3p  F6 ;  F4p  F8 ; F5p  F8 ;  

F6p  F8 ; F7p  F4 ; F7p  F5 

 
Fig.4 Gantt chart for optimization parallel system in 

basic mode 

To such identified parallel system tasks execution 

times is modified. All execution time vector’s [τi] 

parameters is decreased – the tasks has been shortened 

abut 1[s]. Such changed system is optimised again 

keeping identical precedence constraints. Figure 3 

revealed first Graham’s anomaly, so  shortened tasks 

execution times caused elongated minimum makespan 

scheduling. 

 

τi [s] 1 7 7 29 29 29 5 8 9 

Fi 1 2 3 4 5 6 7 8 9 

Table 2 The modified times of the tasks execution 

 
Fig.5 Gantt chart for optimization parallel system in 

mode with tasks’ execution times shortened 

 

Due to present the second Graham’s anomaly fourth 

computing machine is added. The precedence constraints 

still remain identical to original version of the problem. 

Optimal scheduling presented at diagram number 4 

proves, that even such intuitive operation like increasing 
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parallel computation power of the cluster in special cases 

could cause worse solution towards makespan criterium. 

 

 
Fig.6 Gantt chart for optimization parallel system in 

mode with additional computation machine 

 

Third Graham’s anomaly concern elongated optimal 

time scheduling (Cmax) even though reduction selected 

precedence constraints. According to figure nr 5 

presented  below excepting two constraints from set p  

(F7p  F4 and F2p  F4) causes deterioration solution time 

by five second with relation to original problem. The 

constraints set is following:  

p : F1p  F9 ; F3p  F5 ; F3p  F6 ;  F4p  F8 ; F5p  F8 ;  

p F6p  F8 ; F7p  F5 

 

 
Fig.7 Gantt chart for optimization parallel system in 

mode with precedence constraints reduction 

 

 

5   Conclusion 
The results of the simulations presented in this paper 

show interesting phenomena which is opposite to 

standard parallel-based computations. Sometimes the 

attempt at improvement tasks scheduling and gain 

increasing may causes significant elongated calculation’s 

cycle. An identification problem’s essence could be very 

difficult. 

The measure of single tasks taking execution time 

into account allows to simulate and detect potential 

Graham’s anomalies and consider it in parallel systems. 

The application created by the authors takes into 

considerations data transmission described by the user. 

Future research will concern the attempts at including 

the real image of network packages movement during 

TCP/IP transmission. 
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