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Abstract: In this paper, using the umbral calculus, we introduce an sequence of linear and positive

operators. Some approximation properties on given.
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1 Introduction

This section contains some basic elements of
the umbral calculus (Gian—Carlo Rota and Steven
Roman).

We shall be concerned with the algebra (over
a field of characteristic zero) of all polynomials
p(z) in one variable, to be denoted by II.

By a polynomial sequence we shall denote a
sequence of polynomials p,(x), n = 0,1,2,...,
where p,,(z) is exactly of degree n for all n.

A polynomial sequence is said to be of bino-
mial type if it satisfies the infinite sequences of
identities

" /n
puaty) =3 <k>pk<x>pn_k<y>, n=01,..

k=0

The simplest sequence of binomial type is of
course ", but we give some nontrivial examples

1. pp(x) =2(x —na)" 1, (Abel)

2. (o) U =a(@4+1)-...- (x+n-1),
(upper-factorials)

3. (@l =g@-1)-...-(z—n+1),
(lower-factorials)

The most important shift—invariant operators
are the shift operators, written E¢, that is

E%(z) = p(z + a).

An operator T : I — II which commutes with
all shift operators is called a shift-invariant oper-
ator. In symbols, TE® = E®T, for all real a in
the field.

We define a delta operator (E.B. Hildebrand,
Gian—Carlo Rota), usually denoted by @, as a
shift-invariant operator for which Qx is a nonzero
constant.

For examples:

1. @ = D E® (Abel operator)

1
2. Q= a([ —E~ %), a#0, (backward difference

operator)

1
3. Q=—=(E*—1)a#0, (forward difference
a

operator.)

If @ is a delta operator, then Q) a = 0 for every
constant a.

A polynomial sequence p,(x) is called the se-
quence of basic polynomials for @) if

i) po(z) =1
i) pn(0) = 0 whenever n > 1
iii)  Qpn(z) = npn—1($)7 n > 1.

Every delta operator has an unique sequence
of basic polynomials.

The typical example of a basic polynomial se-
quence is x™, basic for the derivative operator D,
Dp(z) = p'(z).

The following theorem generalizes the Taylor
expansion theorem to delta operators and their
basic polynomials.

Theorem 1 Let T be a shift—invariant operator
and let Q be a delta operator with basic set p,(x).
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Then
=3 TP o (1)

In the following, we write Q = f(D) where
f(t) is a formal power series.

An important result with generating func-
tions for binomial polynomials is in the following
theorem

Theorem 2 Let QQ be a delta operator with basic
polynomials p,(x) and let Q = f(D). Then there
exists the inverse formal power series f~1(u), and

pn('x)un — ea:f_l(u). (2)

n>0

For example, we consider the delta operator

Q: l(E‘P(a) _[>7
a

where [ is the identity operator and ¢ : J —
(0,1), J CR, 0¢ J, is a real function with

¢(z)

T

lim p(z) =0, lim =1

The basic set for @ is

an

m@ﬂZiﬁaw@—wwﬁw~%w—@—1WWD,
where n > 1, po(z) = 1.
We denote
pn(x) = cpZZa) (2)e@] > 1, po(x) =1

() In(1 + au).

Using (2), we obtain
o0
P Z ak ' (z)lkp(@)] W
©*(a) k!
and consider the sequence of linear operators

(Pnf)(z) = 3)

e N gF (m)[k,so(a)} L (k)
=(1+au) »@ g . U —

(14 au)

where z > 0, f:[0,00) — R.
If we impose that

(Ppe1)(z) =z, ep(z) =2, keN

we find
(Prer)(z) =
> d (na)le@l g B
= (14 au) Z a) . o ut o=
1 _ _nz_ CL (ngj)[kv‘f’(a)} &
= — (a) .
n(l—i—au) ¢ Z Fa) (oD u”.

Using the identity
(na)Fel@] =

= nx(nw)[kfl,w(a)} — (k- 1)¢(a)(n$)[kf1,¢(a)}

we have
(Pre1)(z) =
__nx > ak_l ( )[k_l P a)] k-1
= zu(l +au) #@ u' =
IR D D= Ty Ry Ty

1

au _ _naz ° ak_l (nx)[k_le(a)] h—1
- (a) . T =
- (14 au) » Z 1(a) =2 u

and hence
_ p(a)

~a(l—(a)
In the present paper we investigate the se-
quence of linear and positive operators defined by

(Puf)(x) = (4)
= (1-(a))?@ Y

2. (nz)lkela)] f<k>
2 — ol \n
where ¢ : J — (0,1), 0 ¢ J C R, z > 0, and
f€C(]0,00)) is a real and bounded function.

Remark 1 For ¢(x) = sinz, ¢ : (0,7) — (0,1)
we have

fmoto) =0, i 20 =1
and
(Pa f)(x)z

z)lksinal k
(1 — sin a) s Z R s a) f<g>.
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Remark 2 For ¢(a) =a, ¢ :(0,1) — (0,1), the
1
delta operator is Q = E(Ea —I) (forward differ-

[n,a]

ence operator) with the basic set p,(x) = (x)
and

(Puf)(@) 1—a?io 1_[k (%)

Remark 3 Finally we wish to notice that the
Mirakyan—Favard—Szadsz operator

(e =5 3 0 ()

may be obtained as a limiting case of our operators

(4)-

For a — 0 we have

Q — D, (na)l# @] — (n)*

and
1

(1 - p(a)? — e,
Hence P, — M.

2 Approximation properties

New we study the convergence of the sequence

(4).
Lemma 1 The following identities
(Pneo)(z) =1, (Prer)(z) =z, (5)
1—
(Ppeo)(z) = 2% + 74,0(&)96
n
are valid.

Proof: Evidently that (P,eo)(x) = eo(z) and
(Pre1)(x) = er(x).

Next

(Prea)(x) =

Theorem 3 If P, is defined by (4) then one has
lim P,f=f
uniformly on any compact K C [0,00).

Proof: By making use the identities (5) we can
write

lim (Pheg)(x) =er(z), k=0,1,2

n—oo

uniformly on any compact K C [0, 00).

Consequently, our assertion appears directly
from the well known theorem of Bohman-—
Korovkin.

Theorem 4 If P, is defined by (4) then for each
x > 0 the following inequality

| (Buf) (@) = f(z) |<

§<1+min< 1—¢(a),1- ()+—)> ( %)
|

holds, where w(f;6) = sup sup | f(z+h)—f(z)
0<h<6 2>0

1s the first modulus of continuity.

Proof: We have

We consider

5(5) = s 1= s 0 - 10 1=

z,t>0

wlfs| ot ) < <1+5 (x t)2>w(f;5). (6)
For | x —t |< ¢ we have

w(file—t]) <w(f;0) < (146 2(z—t)*)w(f;0)

and the last inequality (6) is valid.
For | x —t |> § we have

w(f;A0) < (14 Aw(f;6) <
where A\=0"1 |2z —t|, A > 1.

Next we introduce the following integral
method

(1+ X)w(f;0),
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where

2@ (nz)ke@]
Ppi(T) = <1 - (P(a)> ( >m- (7)

Using Lemma 1 and the inequality (6) we have

| (Paf)(2) = f(2) [<

k+1

+

0. 9]
sn Z P k(@)
k=0

an(f;é)(% va | Zp;z,m)(w—t)?dt) -
v k=0

of 1= 1
. 2

x .
For § = \/j we obtain

n

| (Paf)(2) = f(2) [< (8)

1
<(2- _— .
< (2= vt + 5 ) (/%)
Now, we starting with the inequality
k
1(5)

using the following property of the first modulus
of continuity

w(fiN) <

<1 467 2(x — t)2>w(f; 8)dt =

:\w\s‘

N O Gy

(1+Mw(f;9)

k
we obtain for A = 5! | - -z |

(B @) <o Ea) <

< (145 o= 2 )uts0)

Hence

| (Puf)(z) = f(2) |<

<1+5 lzpnk |x—5|>w<f;6>

where p! ; () is defined by (8).
From the Cauchy — Schwarz — Buniakowski
inequality we have

ank ]m——y<<zpnk <x_f)2>.

But
kN2
— 2% = 20(Puer)(x) + (Poez)(z) = - _Tf(%
and hence

[ (Pu)e)= 1) 121407 =2 ),

For § = \/E we obtain the following inquality
n

| (Pnf)(z) = f(z) |< 9)

< (e vVime@)e(£5).
From (8) and (9) it results

| (Pnf)(x)

<<1—I—min( 1—cp(a),1—cp(a)+?)rlm)>w(f; %)

Remark 4 For a — 0 we get the well-known i-
nequality for Mirakyan—Favard-Szdsz operator

| (M) = 1) 1 20 1 \/%) (1)

—f@) < (10)
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3 Conclusion

The sequence (Py,) of linear and positive oper-
ators defined by (4) are obtained using the umbral
calculus (further, using the formula for generating
function of binomial polynomials) verify

lim p,f=f
n—oo

uniformly on any compact K C [0,00) and
f €C([0,00)) is a real and bounded function.

Is important the fact that the well-known se-
quences of approximation operators Mirakyan—
Favard—Szasz my be obtained as a limiting case
of our operators.
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