
Traveling Salesperson Problem and Neural Networks.
A Complete Algorithm in Matrix Form

 NICOLAE POPOVICIU MIOARA BONCUŢ
 Faculty of Mathematics-Informatics Faculty of Sciences
 Department of Mathematics Department of Mathematics
 Hyperion University of Bucharest Lucian Blaga University of Sibiu
 Str. Călăraşilor 169, Bucharest Victoriei Avenue 110, Sibiu

 ROMANIA ROMANIA

 Abstract. The work describes all the necessary steps to solve the traveling salesperson problem. This optimization
problem is very easy to formulate -and a lot of works do it-, but it is rather difficult to solve it. By using [1] as a main
reference, we formulate an algorithm in a matrix form to solve the problem. The mathematical approach is based on
Hopfield neural networks and uses the energy function with the descent gradient method. The algorithm in matrix form is
easier to use or to write a computation program. The work has six sections. The section 5 describes the algorithm to solve
the traveling salesperson problem and the section 6 contain an numerical example.
 Key-Words. Traveling salesperson problem, traveling salesperson algorithm, energy function, descent gradient.

1 Introduction
 The traveling salesperson problem (TSP) is an
optimization problem. A salesperson must make a
closed circuit through a certain number of cities,
visiting each of them only once , minimizing the
total distance traveled and the salesperson returns to
the starting point at the end of the trip.

n

 We denote by
 , . ()XYnn dKKK == × , 0=XXd

the distances matrix, where XYd is the distance
between the cities X and Y .
 Related with TSP problem we have three types of
solutions : a) the possible solution (the salesperson
passes many times through certain cities); b) the
admissible solution (the salesperson passes only
once through each city, but the distance traveled is
not minim); c) the optimal solution (the solution is
admissible and the distance traveled is minim) . We
are interested in finding the optimal solution.
 Our task is to find the unknown weights , the
elements of weights matrix V

jXv

 ()jXNN vVVV == × , , njnX ,1;,1 ==

which describes the optimal solution, where the
subscript X refers to the city and the subscript j
refers to the position of the city X on the tour

(route) R. In any admissible solution is satisfied the
condition { }1;0∈JXv

)(RV
 , and the weight changes with

the route R, i.e. V = .
 We denote by all possible tours in a -city

problem. Then

)(nR n

2
!)1(

2
!)(−
==

n
n

nnR

)(nR

6

 . The function

 is a rapidly increasing function [1].
 For TSP problem there exists two cases.

≤ Case 1. n

7≥n

2n

 . The optimal solution can be
obtained by an exhaustive search through all
admissible routs.
 Case 2. . In this case the TSP problem
belongs to the class known as NPC (non possible
complete) problem. The solving of TSP problem is
based on neural network method, which generates a
TSP algorithm. In this work we describe the TSP
algorithm in a matrix form, rather then on
components form. The neural network method has
its origins in continuous Hopfield networks [1], page
144.
 In a Hopfield network the input layer Sx is
identical with the output layer Sy.
 The neural network for TSP has neurons
(processing elements) in layer Sx. Each neuron has
an output function of sigmoid form

Proceedings of the 11th WSEAS International Conference on COMPUTERS, Agios Nikolaos, Crete Island, Greece, July 26-28, 2007 427

mailto:nic.popoviciu@yahoo.com
mailto:mioara.boncut@ulbsibiu.ro

se

sfRf
λ21

1)(),1;0(:
−+

=→ , λ 0> .

The output function is the same for all neurons. 2n
The parameter λ is the curve slope. If 50≥λ then
the function is almost the Heaviside function ,
with the values 0 and 1.

f

2 The weights matrix and energy function
 During the algorithm we shall describe we use the
columns and the lines of weights matrix V . That is
why we use some special notations, as follows
 ()nj vvvvV 21= = ()nj VcolVcolVcol1

 V , Vcol ()TrXba VlinVlinVlinVlin= n
j R∈

 , ()Tni VlinVlinVlinVlinV 21= n
i RVlin ∈

 ()TjrjXjbjaj vvvvVcol =

 ()nXjXXXX vvvvVlin 21= .
Also we use the sum of elements on line X and on
column j and denote

 , . ∑ == n
j jXX vVSline 1 ∑ == n

X jXj vVScol 1
 Using the above notations we construct the
extended matrix Vex having the form

 .

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

=

01

1

1

1

nj

VSlinnrjrr

VSlinnXjXX

anajaa

VScolVScolVScol

vvv

vvv

VSlinvvv

Vex

r

X

 The mathematical model of TSP problem needs
two supplementary weights having the meaning [1]
 (1) nXXXnX vvvv ==+ 01)1(,
 Any admissible route R has an associated matrix

 and an energy function denoted . V)(REE =
 Definition. The energy function is defined by four
sums, as it follows [1], page 151 ; [3]

 4321 2222
)(Σ+Σ+Σ+Σ=

DCBARE (2)

 ∑ ∑ ∑= = ≠==Σ n
X

n
i

n
ijj jXiX vv1 1 ,11

 ∑ ∑ ∑= = ≠==Σ n
j

n
X

n
XYY jYjX vv1 1 ,12

2

1 13 ⎟
⎠
⎞⎜

⎝
⎛ −=Σ ∑ ∑= =

n
X

n
j jX nv

()
XY

vvvdn
X

n
Y

n
j jYjYjXXY

≠

+=Σ ∑ ∑ ∑= = = −+1 1 1 1,1,4

 A lot of papers and books limit the discussions at
this formula and do not show how to use it in a
solving algorithm.
 Proposition 1 . The four sums of energy function
are represented in the following vector form
 ∑

≤<≤
><=Σ

njk
jk vv

1
1 ;2

 ∑
≤<≤

><=Σ
nki

ki VlinVlin
1

2 ;2

2

13 ⎟
⎠
⎞⎜

⎝
⎛ −=Σ ∑ =

n
X X nVSlin

() ()+−+−=Σ 22114 [2 bbabbaab vVSlinvvVSlinvd
 () +−+]bnbna vVSlinv

 + () ()+−+− 2211[2 ccaccaac vVSlinvvVSlinvd
 () +−+]cncan vVSlinv ,
where the last sum is extended for all distances in the
upper superior triangular positions , i.e.
 nkidd kiXY ≤<≤= 1, .
 The notation >< vu ; means the scalar product

 . nnT RvRuvuvu ∈∈>=< ,,;
 Proof . One uses the definitions of sums

4321 ,,, ΣΣΣΣ with a convenient association of the
weights (End). jXv

3 The relation between continuous
Hopfield model and TSP problem
 The Hopfield network with processing
elements, attached to TSP problem proceeds from
the continuous Hopfield model [1], page 144. The
continuous model is described by two differential
equations (with independent notations [1])

2n

Proceedings of the 11th WSEAS International Conference on COMPUTERS, Agios Nikolaos, Crete Island, Greece, July 26-28, 2007 428

 ∑ = +−= n
j i

i
i

jji
i I

R
u

vw
dt

du
p 1 (3)

 ∑ =

−
⎟
⎠

⎞
⎜
⎝

⎛−= n
i

i
i

i
dt

dv
dv

vdf
p

dt
dE

1

21)(
 (4)

where . nivfuufv iiii ,1),(),(1 === −

 Two things are very important in the future: the
time delay from equation (3) and ii Ru /−)(vEE =
from (4).
 The variables from continuous model [1]
become

iu

 in TSP problem. njnXu jX ,1;,1, ==

We denote ()jXnn uUUU == × , , where are
input variables. Then we compute the weights

jXu

 ()jXjX ufv = , ⎟
⎠

⎞
⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛ +=

− jXu
jX ev

λ2
1/1

 ()jXnn vVVV == × , (5)
 According to the general techniques of neural
networks, the variables are updated when the
algorithm passes from time t (the route t) to time

 (the route). The updating is done by a
recurrent relation which has two equivalent forms: a
component form or a matrix form, respectively

jXu

1+t 1+t

 (6))()()1(tututu jXjXjX Δ+=+

 ,)()()1(tUtUtU Δ+=+ ())()(tutU jXΔ=Δ (7)
 Now the main question is to find the appropriate
form of corrections . Again we use the
general neural networks theory: the corrections are
defined by descent gradient of energy function. So
we have the following dependences:

)(tu jXΔ

 , .)(),(vEEREE ==)(),(uEEufv ==

The derivative are positive, namely 0,0 >>
du
dE

dv
dE .

 Due to time delay from (3) and the descent
gradient, we define the corrections by the relation

 0)(1)(<−−=Δ
jX

jXjX dv
dEtutu

τ
 (8)

The 0>τ is a parameter controlled by the user.

4 The explicit correction form and new
matrix notations
 The formula (8) and give the following
corrections

)(vEE =

 ∑
≠=

−−−=Δ
n

jkk
jXjXjX tvAtutu

;1
)()(1[)(

τ

 −⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−−− ∑ ∑∑

= =≠=

n

Y

n

k
kY

n

XYY
jY ntvCtvB

1 1;1
')()(

 () tvvdD
n

Y
jYjYYX Δ+− ∑

=
−+

1
1,1,] (9)

where appear some parameters for user’s disposal
 nnnnt 5.1',0',)1;0(,)1;0(≤<≥∈Δ∈τ
 In order to compute the laborious formula (9) we
use new notations, as it follows
 ())(; tvVSlinjkVlinS jXXX −=≠

 ())(; tvVScolXYVcolS jXjj −=≠

 () ∑ ∑= = −= n
Y

n
k kY ntvnVS 1 1 ')(';

 (10) () ()∑ = −+ += n
Y jYjYYXX vvdjKlinS 1 1,1,;

(the meanings of the letters are: S is the sum in the
matrix V or K etc.) .
 Proposition 2 . The corrections (9) take the form

 []−−−−=Δ)()(1{)(tvVSlinAtutu jXXjXjX τ

 [] ()[]−−−− ';)(nVSCtvVScolB jXj

 ()[] tjKlinSD X Δ− }; (11)
 Proof . One uses the notations (10). (End).
 The formula (10) determine us to introduce the
following matrix
 ()1,1,

~,~~
−+× +== jYjYnn vvVVV (12)

 Proposition 3 . All the sums from (10) create a
new matrix (as a product)
 ()()jKlinSVK X ;~ = (13)
 Proof . One uses (1) and the direct computation.
(End).
 We can write the elements from (11) or
equivalent the matrix from (7) if we
introduce the matrices (denoted by a succession of
two or three letters)

)(tu jXΔ

)(tUΔ

Proceedings of the 11th WSEAS International Conference on COMPUTERS, Agios Nikolaos, Crete Island, Greece, July 26-28, 2007 429

 . nnnnnn VSCVSCVSLVSLVSVS ××× === ,,
 Explicitly, for n=4, the above matrices have the
forms

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

=

)';()';()';()';(
)';()';()';()';(
)';()';()';()';(
)';()';()';()';(

nVSnVSnVSnVS
nVSnVSnVSnVS
nvSnVSnVSnVS
nVSnVSnVSnVS

VS

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

=

dddd

cccc

bbbb

aaaa

VSlinVslinVSlinVSlin
VslinVSlinVSlinVSlin
VSlinVSlinVSlinVSlin
VSlinVSlinVSlinVSlin

VSL

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

=

4321

4321

4321

4321

VScolVScolVScolVScol
VScolVScolVScolVScol
VScolVScolVScolVScol
VScolVScolVScolVScol

VSC

 Proposition 4 . The corrections (11) from the
proposition 2 have the matrix form
 nnnn tUtUtUtU ×× Δ=Δ=)()(,)()(

[] [−−−−−−=Δ)()()(1{)(tVVSCBtVVSLAtUtU]
τ

 () tVKDVSC Δ−− })~((14)
 Proof . We use (11) and the special matrices VS,
VSL and VSC. (End).
 The updating recurrent relations (6) or the
equivalent matrix form (7) work if we know the
initial values or the initial matrix

 for first route.

)1(0
jXjX uu =

)1(0 UU =

5 The TSP algorithm in matrix form
 Having all the above notations, formulas and
ideas we can describe the TSP algorithm. We choose
to describe this algorithm in matrix form.
 Step 1. We introduce the input data :
 a). - number of towns; n ()YXdK = ; -
number of algorithm iterations.

N

 b). general parameters tn Δ,,,' τλ ;

 c). inhibitions parameters . DCBA ,,,

 d). output function
se

sf
λ21

1)(
−+

= .

 e). initial values ()00
jXuU = , njnX ,1;,1 == .

 f). we declare the dimensions for all matrices :
 and so on. VexVVUK ,~,,,
 Step 2. We execute the computations in a DO
loop as it follows
 L0 CONTINUE
 DO L3 t=1, N
 * compute the sigmoid outputs and create
 the matrix ())(tvV jX=
 DO L2 X=1,n
 DO L1 j=1,n
 [])()(tuftv jXjX =
 L1 CONTINUE
 L2 CONTINUE
 * compute the sums 321 ,, ΣΣΣ from
 proposition 1
 ∑

≤<≤
><=Σ

njk
jk tvtv

1
1)();(2

 ∑
≤<≤

><=Σ
nki

ki tVlintVlin
1

2)();(2

2

1 13)(⎟
⎠
⎞⎜

⎝
⎛ −=Σ ∑ ∑= =

n
Y

n
k kY ntv

 * compute the extended matrix)(tVex
 * using we compute the sum)(),(, tVextVK
 4Σ from proposition 1.
 * compute the energy function

 4321 2222
)(Σ+Σ+Σ+Σ=

DCBAtE

 * optional: print the values .)(),(, tEtVt
 * compute the following matrices at time t
 () nXtVSlinVSL X ,1,)(==
 () njtVScolVSC j ,1,)(==

 ())()(~
1,1, tvtvV jXjX −+ += , for

 all njnX ,1;,1 ==
 VK ~
 * compute the correction matrix)(tUΔ by
 using the formula (14) from proposition 4

Proceedings of the 11th WSEAS International Conference on COMPUTERS, Agios Nikolaos, Crete Island, Greece, July 26-28, 2007 430

 * update the input matrix U by the recurrent
 equation
)()()1(tUtUtU Δ+=+
 L3 CONTINUE (the DO loop until t=N) .
 Step 3. Verify if the closed Do loop generates an
admissible TSP solution, by the matrix
 ())()(NvNV jX= .
 There are several possibilities (versions)
 Version 1. The matrix generates an
admissible TSP solution. Then GO TO label L4.

)(NV

 Version 2. The matrix do not generate an
admissible solution because

)(NV

 i.e. . { }1;0)(∉Nv jX ()1;0∈jXv
 Then we replace by and GO TO
label L0 and resume the cycle DO loop.

N NNN >','

 Version 3. One uses the matrix and
compute the maxim element on each line

 . We denote it by

)(NV

nXX ,1, = 0)(* =Nv jX . If

8.0,)1;()(* >∈ εεNv jX (for example) then we set

 and all the other elements

 on the line X. (winner-take-all).

The resulting matrix is denoted , where l
means the work on lines. Analogous we can compute
the maxim element on each column

 . So we obtain the matrix , where the
letter means the work on columns.

1* =jXv

*,0)(jjNv jX ≠=

)(* NVl

)(* Nv jX

nj ,1=)(* NVc
c

 Compute the routes described by matrices

, and take the best one. GO TO L4.

)(* NVl

)(* NVc
 L4 CONTINUE
 Step 4. Print the final results :
 or , and the route ,N)(* NVl)(* NVc)(NE *R .
 STOP
 END
6 Application
Let be with the value and the distances
between the towns a, b, c, d given by the matrix

 . Apply the above algorithm to

find the best route.

n 4=n

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

=

0152
1023
5207
2370

K

 Solution. We use the parameters
 10,01.0,1,10,5',4 =−Δ==== Ntnn τλ

 10,4,10,10 ==== DCBA ,
se

sf
201

1)(
−+

=

 The initial inputs are

 . For

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

==

0211
2110
1102
1021

)1(0 UU 1=t we obtain

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

=

500.0000.1999.0999.0
000.1999.0999.0500.0
999.0999.0500.0000.1
999.0500.0000.1999.0

)1(V

 952.351 =Σ , 952.352 =Σ , 252.03 =Σ
 56.3694 =Σ ; and so on. 84.22707)1(=E

References
 [1]. FREEMAN A. James, SKAPURA M. David,
Neural Networks: Algorithms, Applications and
Programming Techniques, Addison-Wesley Publishing
Company, 1991.
 [2]. JAIN K. Anil, MAO Jianchang, MOHIUDDIN K.
M. , Artificial Neural Networks: A Tutorial, IEEE, March,
1996.
 [3]. KRÖSE Ben, Van der SMAGT Patrick, An
Introduction to Neural Networks , Chapter 5, University
of Amsterdam, Eighth Edition, November 1996.
 [4]. POPOVICIU Nicolae, BONCUT Mioara, A
Complete Sequential Learning Algorithm for RBF
Neural Networks with Applications , WSEAS
Transactions on Systems, Issue 1, Volume 6, January
2007, pages 24-32.
 [5]. SYED SAAD ALZHAR A. , RBF Neural
Networks Based Self-Tuning Adaptive Regulator,
WSEAS Transactions on Systems, Issue 9, Volume 3,
Nov. 2004.

Proceedings of the 11th WSEAS International Conference on COMPUTERS, Agios Nikolaos, Crete Island, Greece, July 26-28, 2007 431

