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Traveling Salesperson Problem and Neural Networks.
A Complete Algorithm in Matrix Form
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Abstract. The work describes all the necessary steps to solve the traveling salesperson problem. This optimization
problem is very easy to formulate -and a lot of works do it-, but it is rather difficult to solve it. By using [1] as a main
reference, we formulate an algorithm in a matrix form to solve the problem. The mathematical approach is based on
Hopfield neural networks and uses the energy function with the descent gradient method. The algorithm in matrix form is
easier to use or to write a computation program. The work has six sections. The section 5 describes the algorithm to solve
the traveling salesperson problem and the section 6 contain an numerical example.
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1 Introduction

The traveling salesperson problem ( TSP ) is an
optimization problem. A salesperson must make a
closed circuit through a certain N number of cities,
visiting each of them only once , minimizing the
total distance traveled and the salesperson returns to
the starting point at the end of the trip.

We denote by

K'=Knxn, K=(dxy), dxx =0
the distances matrix, where dyxy is the distance
between the cities X and Y .

Related with TSP problem we have three types of
solutions : a) the possible solution ( the salesperson
passes many times through certain cities ); b) the
admissible solution ( the salesperson passes only
once through each city, but the distance traveled is
not minim ); ¢) the optimal solution ( the solution is
admissible and the distance traveled is minim ) . We
are interested in finding the optimal solution.

Our task is to find the unknown weights v j , the

elements of weights matrix V
V =VNxN,VY = VX j)s X =1n; j=1n

which describes the optimal solution, where the
subscript X refers to the city and the subscript j

refers to the position of the city X on the tour

(route) R. In any admissible solution is satisfied the
condition Vx j € {O;l} , and the weight changes with

the route R, i.e. V =V (R) .

We denote by R(n) all possible tours in a n-city
problem. Then R(n) :%:Q . The function
R(n) is a rapidly increasing function [1].

For TSP problem there exists two cases.

Case 1. n<6 . The optimal solution can be
obtained by an exhaustive search through all
admissible routs.

Case 2. n>7 . In this case the TSP problem
belongs to the class known as NPC ( non possible
complete ) problem. The solving of TSP problem is
based on neural network method, which generates a
TSP algorithm. In this work we describe the TSP
algorithm in a matrix form, rather then on
components form. The neural network method has
its origins in continuous Hopfield networks [1], page
144.

In a Hopfield network the input layer Sx is
identical with the output layer Sy.

The neural network for TSP has n’ neurons
(processing elements) in layer Sx. Each neuron has
an output function of sigmoid form
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1+e_2ﬂ5

f:R—(0;), f(s)= A>0.

The output function is the same for all n? neurons.
The parameter A is the curve slope. If 4 >50 then
the function f 1is almost the Heaviside function ,

with the values 0 and 1.

2 The weights matrix and energy function
During the algorithm we shall describe we use the
columns and the lines of weights matrix V . That is
why we use some special notations, as follows
Vv :(vl VeV ---vn) = (\/coll -+-Veol ---Vcoln)

V = (Vling Vliny --Vliny --Vling )T, Veol j € R"
V = (Vlin; Vlin, --Vlinj ---Vlin, )T, Vlin; e R"
\T
Veol :(Vaj Vhj VX j "'Vrj)
Vliny :(VXI VX2 VX j ---Vxn) .

Also we use the sum of elements on line X and on
column j and denote

VSliney :Z?:NXj ,Vscolj =20 _ vy .

Using the above notations we construct the
extended matrix Vex having the form

Val VaJ Van VSIlna

VX1 VX VXn VSliny
Vex =

Vrr o Vrj o Vrno VSling

VScol, ---VScol j ---VScolp 0

The mathematical model of TSP problem needs
two supplementary weights having the meaning [1]

VX (n+1) =VX1>VX0 =VXn (1)

Any admissible route R has an associated matrix
V' and an energy function denoted E = E(R).

Definition. The energy function is defined by four

sums, as it follows [1], page 151 ; [3]

A B C D
E(R)= 31 +—3h + =32 +—3 2
()21222324 (2)

2= XX iy X i VXV ]
n n n o
Lo =2 o1 X 1 2y =1y £ X VX VY
2
23 =(Z?<:12?:1ij' _n)

4 =Z&=12$=12?=1dxvvxj(VY,j+1 vy j-1)
Y =X

A lot of papers and books limit the discussions at
this formula and do not show how to use it in a
solving algorithm.

Proposition 1 . The four sums of energy function
are represented in the following vector form

=20 X<V >
I<k< j<n

2y =2 Y <Vlinj;Vling >
I<i<k<n

n . 2
¥y = (Zx _,VSliny - n)
¥4 = 2dap[Var (VSling — Vi )+ Vas (VSling —vpy )+
+Van (VSling —vep )1+,
where the last sum is extended for all distances in the
upper superior triangular positions , i.e.
dxy =djk,1<i<k<n.

The notation < uU;v > means the scalar product

<U;V>=UTV,U€Rn,VERn .

Proof One uses the definitions of sums
21,29,23,%4 with a convenient association of the

weights Vx j (End).

3 The relation between continuous
Hopfield model and TSP problem

The Hopfield network with n? processing
elements, attached to TSP problem proceeds from
the continuous Hopfield model [1], page 144. The
continuous model is described by two differential
equations ( with independent notations [1] )
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dui _gon ey J Y
o df 1(v,)(dv,j
—=— 4
Z' =1P dv; dt ¥
where vj = f(Uj), uj = £l (vj),i=1Ln .

Two things are very important in the future: the
time delay —uj /R; from equation (3) and E = E(v)
from (4).

The variables uj from continuous model [1]
become

ux s X =1,n; j=1,n in TSP problem.

We denote U =U .U :(uxj), where Uy j are

input variables. Then we compute the weights

vx = flux ). vx :(1/(1+e_2AUXjD

V =Voun. V =lvx j) (5)
According to the general techniques of neural
networks, the variables Uy j are updated when the

algorithm passes from time t ( the route t ) to time
t+1 ( the route t+1 ). The updating is done by a
recurrent relation which has two equivalent forms: a
component form or a matrix form, respectively

ux jt+D=ux j®)+Aux () (6)
Ut+1) =U ) +AU() , AU®) = (aux j©) (7)

Now the main question is to find the appropriate
form of corrections AuUx j (t) . Again we use the

general neural networks theory: the corrections are
defined by descent gradient of energy function. So
we have the following dependences:

E=E(R), E=E(v),v=f(u),E=E(u) .

. . E E
The derivative are positive, namely g€ > 0,3— >0 .
u

v
Due to time delay from (3) and the descent

gradient, we define the corrections by the relation
1 dE
Ay j(O) = ——Ux jO————<0  (8)
T dvy j

The 7 > 0 is a parameter controlled by the user.

4 The explicit correction form and new

matrix notations
The formula (8) and E = E(v) give the following
corrections

AuXJ(t)_[——uXJ(t) A ZVXJ(t)—

k=Lk=j
n n
- B Zij(t)—C[Z Zva(t)—n'}—
Y =LY £X Y =1k=1
n
D Ydxy (v, jo1+wy, o1 fiat ©)
Y=1

where appear some parameters for user’s disposal
7€ (0;1) ,At € (0;1),n'>0,n<n'<1.5n
In order to compute the laborious formula (9) we
use new notations, as it follows

S(Vliny ;k # j)=VSliny —vyx j(t)
S{veol j;Y = X )=VScolj —vx (1)

S(Vin) =20 R k-’

s(Kliny ; j)=>y_ dxy (VY,j+1 +VY,j-1) (10)
( the meanings of the letters are: S is the sum in the
matrix V or K etc.) .
Proposition 2 . The corrections (9) take the form

Aux j(t) = {—%ux §© - Asling vy j®)]-
—BlvScolj —vy j()]-C[s(v:n)]-

—D[S(Kliny ; j)]} At (11)

Proof . One uses the notations (10). (End).

The formula (10) determine us to introduce the
following matrix

\7=\7n><na\7=(VY,j+1+VY,j—1) (12)

Proposition 3 . All the sums from (10) create a
new matrix ( as a product )

KV = (S(Klin; j)) (13)

Proof . One uses (1) and the direct computation.
(End).

We can write the elements Aux j(t) from (11) or
equivalent the matrix AU(t) from (7) if we

introduce the matrices ( denoted by a succession of
two or three letters )
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VS =VSpyn ,VSL = VSLyyn ,VSC =VSCpyp .

Explicitly, for n=4, the above matrices have the
forms

S(V;n') S(V;n') S(V;n') S(V;n')
S(V;n') S(V3n') S(V;n') S(v;n')
1 S(Vin) S(Vin) S(V;n) S(V;n')
S(V;n') S(V;n') S(V;n') S(V;n')

VSling
VSliny
VSling
VSling

VSling  VSling  VSling
VSlin,  VSling  VSling
VSling  VSling  Vsling

VSling Vsling VSling

VSL =

VScoly
VScoly
VScoly
VScoly

VScol,
VScol,
VScol,
VScol,

VScol;
VScols
VScolj
VScol;

VScoly
VScoly
VScoly
VScoly

VSC =

Proposition 4 . The corrections (11) from the
proposition 2 have the matrix form

AU (t) = {—%U (t)— A[VSL -V (t)]- B[VSC -V (1)]-

~C(VS)-D(KV)} At (14)
Proof . We use (11) and the special matrices VS,
VSL and VSC. (End).

The updating recurrent relations (6) or the
equivalent matrix form (7) work if we know the

initial values ug)( i =Uy j(l) or the initial matrix

ul=u (1) for first route.

5 The TSP algorithm in matrix form

Having all the above notations, formulas and
ideas we can describe the TSP algorithm. We choose
to describe this algorithm in matrix form.

Step 1. We introduce the input data :

a). N - number of towns; K :(dxy) ; N -

number of algorithm iterations.
b). general parameters n', 4,7, At ;

¢). inhibitions parameters A,B,C,D .

d). output function f(s) =

1

1+e 248

0

e). initial values ud :(uxj) , X=Lnj=1Ln.

f). we declare the dimensions for all matrices :
K,U,V.,V,Vex and so on.
Step 2. We execute the computations in a DO

loop as it follows

LO CONTINUE

L1
L2

DO L3 t=I,N

* compute the sigmoid outputs and create
the matrix V = (VX j (t))

DO L2 X=I,n

DO L1 j=1,n

vx j®=flux j®)]

CONTINUE

CONTINUE

* compute the sums X1,X,,%3 from

proposition 1

X1=2 Z<Vk(t);Vj(t)>
1<k< j<n

Ty =2 D <Vlinj(t);Vling (t) >
I<i<k<n

n n 2
3= 2y 2k Wrk®-n
* compute the extended matrix Vex(t)
* using K,V (t),Vex(t) we compute the sum
24 from proposition 1.

* compute the energy function
A

Et)= 521 +%22 +%23 +%Z4

* optional: print the values t,V (t),E(t) .

* compute the following matrices at time t
VSL = (VSliny (1)), X =1,n

VSC = (vscol j())  j=1,n

V =[x, j1®+vx_j1 (1), for

all X =1,n;j=1Ln

KV

* compute the correction matrix AU (t) by
using the formula (14) from proposition 4
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* update the input matrix U by the recurrent
equation
U+ =U@)+AU ()
L3 CONTINUE (the DO loop until t=N) .
Step 3. Verify if the closed Do loop generates an
admissible TSP solution, by the matrix
VIN)=[vx j(N)).
There are several possibilities ( versions )
Version 1. The matrix V(N) generates an

admissible TSP solution. Then GO TO label L4.
Version 2. The matrix V(N) do not generate an

admissible solution because
vx j(N) 2 {0:1} ie. vy j €(0:1) .
Then we replace N by N',N'>N and GO TO

label LO and resume the cycle DO loop.
Version 3. One uses the matrix V(N) and

compute the maxim element on each line
X, X =1,n . We denote it by vxj*(N)=0 If

Vy j* (N) e (&), € > 0.8 ( for example ) then we set

=1 and all the other elements

VX J*
vx j(N)=0, j# J* on the line X. (winner-take-all).

The resulting matrix is denoted V|*( N), where |

means the work on lines. Analogous we can compute

the maxim element vx*j(N) on each column

J =1Ln . So we obtain the matrix V; (N) , where the
letter ¢ means the work on columns.

Compute the routes described by matrices V|>|< (N)

, VC*(N) and take the best one. GO TO L4.
L4 CONTINUE
Step 4. Print the final results :
N, V| (N) or V¢ (N) , E(N) and the route R
STOP
END

6 Application
Let n be with the value n=4 and the distances
between the towns a, b, ¢, d given by the matrix

0 7 3 2
K7025A1thb lgorithm t
= . e above algorithm to
320 1| PPY vede
2 510
find the best route.
Solution. We use the parameters
n=4,n=51=10,7=1,At-0.01,N =10
1
A=10,B=10,C=4,D=10, f(S)=———
1+e7208
The initial inputs are
1 2 01
0 2 011 )
U =U()= . For t =1 we obtain
011 2
1120
0.999 1.000 0.500 0.999
V()= 1.000 0.500 0.999 0.999
- 10.500 0.999 0.999 1.000
0.999 0.999 1.000 0.500
21 =35.952, %y =35952, X3 =0.252
24 =369.56 ; E(1) =22707.84 and so on.
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