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     Abstract. The work describes all the necessary steps to solve the traveling salesperson problem. This optimization 
problem is very easy to formulate -and a lot of works do it-, but it is rather difficult to solve it. By using [1] as a main 
reference, we formulate an algorithm in a matrix form to solve the problem. The mathematical approach is based on 
Hopfield neural networks and uses the energy function with the descent gradient method. The algorithm in matrix form is 
easier to use or to write a computation program. The work has six sections. The section 5 describes the algorithm to solve 
the traveling salesperson problem and the section 6 contain an numerical example.  
     Key-Words. Traveling salesperson problem, traveling salesperson algorithm, energy function, descent gradient.  
 
 
1  Introduction  
     The traveling salesperson problem ( TSP ) is an 
optimization problem. A salesperson must make a 
closed circuit through a certain  number of cities, 
visiting each of them only once , minimizing the 
total distance traveled and the salesperson returns to 
the starting point at the end of the trip.  

n

     We denote by  
      ,  .  ( )XYnn dKKK == × , 0=XXd

the distances matrix, where XYd  is the distance 
between the cities X  and Y  .  
     Related with TSP problem we have three types of  
solutions : a) the possible solution ( the salesperson 
passes many times through certain cities ); b) the 
admissible  solution ( the salesperson passes only 
once through each city, but the distance traveled is 
not minim ); c) the optimal  solution ( the solution is 
admissible and the distance traveled is minim ) . We 
are interested in finding the optimal solution.  
    Our task is to find the unknown weights  , the 
elements of weights matrix V   

jXv

     ( )jXNN vVVV == × , ,   njnX ,1;,1 ==

which describes the optimal solution, where the 
subscript X  refers to the city and the subscript j  
refers to the position of the city X  on the tour 

(route) R. In any admissible solution is satisfied the 
condition { }1;0∈JXv

)(RV
 , and the weight changes with 

the route R, i.e. V =  .  
     We denote by  all possible tours in a -city 

problem. Then 
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 . The function 

 is a rapidly increasing function [1].  
     For TSP problem there exists  two cases.  

≤     Case 1. n

7≥n

2n

 . The optimal solution can be 
obtained by an exhaustive search through all 
admissible routs.  
     Case 2.  . In this case the TSP problem 
belongs to the class known as NPC ( non possible 
complete ) problem. The solving of TSP problem is 
based on neural network method, which generates a 
TSP algorithm. In this work we describe the TSP 
algorithm in a matrix form, rather then on 
components form. The neural network method has 
its origins in continuous Hopfield networks [1], page 
144.  
     In a Hopfield network the input layer Sx  is 
identical with the output layer Sy.  
     The neural network for TSP has  neurons 
(processing elements) in layer Sx. Each neuron has 
an output function of sigmoid form  
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The output function is the same for all  neurons.  2n
The parameter λ  is the curve slope. If 50≥λ  then 
the function  is almost the Heaviside function , 
with the values 0 and 1.  

f

 
2 The weights matrix and energy  function  
     During the algorithm we shall describe we use the 
columns and the lines of weights matrix V  . That is 
why we use some special notations, as follows  
     ( )nj vvvvV 21=  = ( )nj VcolVcolVcol1   

   V  , Vcol   ( )TrXba VlinVlinVlinVlin= n
j R∈

      ,   ( )Tni VlinVlinVlinVlinV 21= n
i RVlin ∈

       ( )TjrjXjbjaj vvvvVcol =

     ( )nXjXXXX vvvvVlin 21=  .  
Also we use the sum of elements on line X and on 
column j and denote  

      ,  .  ∑ == n
j jXX vVSline 1 ∑ == n

X jXj vVScol 1
     Using the above notations we construct the 
extended matrix Vex  having the form  
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     The mathematical model of TSP problem needs 
two supplementary weights having the meaning [1]  
             (1)  nXXXnX vvvv ==+ 01)1( ,
     Any admissible route R has an associated matrix 

 and an energy function denoted .  V )(REE =
     Definition. The energy function is defined by four 
sums, as it follows [1], page 151 ; [3]  

     4321 2222
)( Σ+Σ+Σ+Σ=

DCBARE        (2)  

       ∑ ∑ ∑= = ≠==Σ n
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     A lot of papers and books limit the discussions at 
this formula and do not show how to use it in a 
solving algorithm.  
     Proposition 1 . The four sums of energy function 
are represented in the following vector form  
     ∑

≤<≤
><=Σ

njk
jk vv

1
1 ;2   

     ∑
≤<≤

><=Σ
nki

ki VlinVlin
1

2 ;2   
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⎝
⎛ −=Σ ∑ =

n
X X nVSlin

( ) ( )+−+−=Σ 22114 [2 bbabbaab vVSlinvvVSlinvd
   ( ) +−+ ]bnbna vVSlinv   

    + ( ) ( )+−+− 2211[2 ccaccaac vVSlinvvVSlinvd  
    ( ) +−+ ]cncan vVSlinv  ,  
where the last sum is extended for all distances in the 
upper superior triangular positions , i.e.  
     nkidd kiXY ≤<≤= 1,  .  
     The notation >< vu ;  means the scalar product  

      .  nnT RvRuvuvu ∈∈>=< ,,;
     Proof . One uses the definitions of sums 

4321 ,,, ΣΣΣΣ  with a convenient association of the 
weights  (End).  jXv
 
3 The relation between continuous 
Hopfield  model  and  TSP  problem  
     The Hopfield network with  processing 
elements, attached to TSP problem proceeds from 
the continuous Hopfield model [1], page 144. The 
continuous model is described by two differential 
equations ( with independent notations [1] )  

2n
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where  .  nivfuufv iiii ,1),(),( 1 === −

     Two things are very important in the future: the 
time delay  from equation (3) and ii Ru /− )(vEE =  
from (4).  
     The variables  from continuous model [1] 
become  

iu

      in TSP problem.  njnXu jX ,1;,1, ==

We denote ( )jXnn uUUU == × , , where  are 
input variables. Then we compute the weights  

jXu

     ( )jXjX ufv =  ,   ⎟
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     ( )jXnn vVVV == × ,     (5)  
     According to the general techniques of neural 
networks, the variables  are updated when the 
algorithm passes from time t  ( the route t  ) to time 

 ( the route  ). The updating is done by a 
recurrent relation which has two equivalent forms: a 
component form or a matrix form, respectively  

jXu

1+t 1+t

        (6)  )()()1( tututu jXjXjX Δ+=+

  , )()()1( tUtUtU Δ+=+ ( ))()( tutU jXΔ=Δ  (7)  
     Now the main question is to find the appropriate 
form of corrections  . Again we use the 
general neural networks theory: the corrections are 
defined by descent gradient of energy function. So 
we have the following dependences:  

)(tu jXΔ

      ,  .  )(),( vEEREE == )(),( uEEufv ==

The derivative are positive, namely 0,0 >>
du
dE

dv
dE  .  

     Due to time delay from (3) and the descent  
gradient, we define the corrections by the  relation  

     0)(1)( <−−=Δ
jX

jXjX dv
dEtutu

τ
  (8)  

The 0>τ  is a parameter controlled by the user.  
 

4  The explicit  correction form and new 
matrix  notations  
     The formula (8) and  give the following 
corrections  

)(vEE =
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≠=
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Y
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1,1, ]   (9)  

where appear some  parameters for user’s disposal  
     nnnnt 5.1',0',)1;0(,)1;0( ≤<≥∈Δ∈τ   
     In order to compute the laborious formula (9) we 
use new notations, as it follows  
     ( ) )(; tvVSlinjkVlinS jXXX −=≠   

     ( ) )(; tvVScolXYVcolS jXjj −=≠   

       ( ) ∑ ∑= = −= n
Y

n
k kY ntvnVS 1 1 ')(';

   (10)  ( ) ( )∑ = −+ += n
Y jYjYYXX vvdjKlinS 1 1,1,;

( the meanings of the letters are: S is the sum in the 
matrix V or K etc.) .  
     Proposition 2 . The corrections (9) take the form  

     [ ]−−−−=Δ )()(1{)( tvVSlinAtutu jXXjXjX τ
  

                        [ ] ( )[ ]−−−− ';)( nVSCtvVScolB jXj   

                        ( )[ ] tjKlinSD X Δ− };   (11)  
     Proof . One uses the notations (10). (End).  
     The formula (10) determine us to introduce the 
following matrix  
     ( )1,1,

~,~~
−+× +== jYjYnn vvVVV    (12)  

     Proposition 3 . All the sums from (10) create a  
new matrix  ( as a product )  
     ( )( )jKlinSVK X ;~ =     (13)  
     Proof . One uses (1) and the direct computation. 
(End).  
     We can write the elements  from (11) or 
equivalent the matrix  from (7) if we 
introduce the matrices ( denoted by a succession of 
two or three letters )  

)(tu jXΔ

)(tUΔ
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     .  nnnnnn VSCVSCVSLVSLVSVS ××× === ,,
     Explicitly, for n=4, the above matrices have the 
forms  
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     Proposition 4 . The corrections (11) from the 
proposition 2 have the matrix form  
       nnnn tUtUtUtU ×× Δ=Δ= )()(,)()(

[ ] [ −−−−−−=Δ )()()(1{)( tVVSCBtVVSLAtUtU ]
τ

  

               ( ) tVKDVSC Δ−− })~(    (14)  
     Proof . We use (11) and the special matrices VS, 
VSL and VSC. (End).  
     The updating recurrent relations (6) or the 
equivalent matrix form (7) work if we know the 
initial values  or the initial matrix 

 for first route.  

)1(0
jXjX uu =

)1(0 UU =
 
5  The  TSP  algorithm  in  matrix  form  
     Having all the above notations, formulas and 
ideas we can describe the TSP algorithm. We choose 
to describe this algorithm in matrix form.  
     Step 1. We introduce the input data :  
     a).  - number of towns; n ( )YXdK =  ;  - 
number of algorithm iterations.  

N

     b). general parameters tn Δ,,,' τλ ;  

     c). inhibitions parameters  .  DCBA ,,,

     d). output function 
se

sf
λ21

1)(
−+

=  .  

     e). initial values ( )00
jXuU =  , njnX ,1;,1 ==  .  

     f). we declare the dimensions for all matrices :  
      and so on.  VexVVUK ,~,,,
     Step 2. We execute the computations in a DO 
loop as it follows  
     L0  CONTINUE  
            DO  L3  t=1, N  
            *  compute the sigmoid outputs and create  
            the matrix ( ))(tvV jX=   
            DO  L2  X=1,n  
            DO  L1  j=1,n  
            [ ])()( tuftv jXjX =   
     L1  CONTINUE  
     L2  CONTINUE  
            *  compute the sums 321 ,, ΣΣΣ  from  
            proposition 1  
            ∑

≤<≤
><=Σ

njk
jk tvtv

1
1 )();(2   

            ∑
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><=Σ
nki

ki tVlintVlin
1

2 )();(2   
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1 13 )( ⎟
⎠
⎞⎜

⎝
⎛ −=Σ ∑ ∑= =

n
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n
k kY ntv

            *  compute the extended matrix   )(tVex
            *  using  we compute the sum  )(),(, tVextVK
            4Σ  from proposition 1.  
            *  compute the energy function  

            4321 2222
)( Σ+Σ+Σ+Σ=

DCBAtE   

            *  optional: print the values  .  )(),(, tEtVt
            *  compute the following matrices at time t  
            ( ) nXtVSlinVSL X ,1,)( ==   
            ( ) njtVScolVSC j ,1,)( ==   

            ( ))()(~
1,1, tvtvV jXjX −+ += , for  

            all  njnX ,1;,1 ==   
            VK ~   
            *  compute the correction matrix )(tUΔ  by  
            using the formula (14) from proposition 4  
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            *  update the input matrix U  by the recurrent  
            equation  
              )()()1( tUtUtU Δ+=+
     L3  CONTINUE  (the DO  loop until t=N ) .  
     Step 3. Verify if the closed Do loop generates an 
admissible TSP solution, by the matrix  
            ( ))()( NvNV jX=  .  
     There are several possibilities ( versions )  
     Version 1. The matrix  generates an 
admissible TSP solution. Then GO TO  label L4.  

)(NV

     Version 2. The matrix  do not generate an 
admissible solution because  

)(NV

      i.e.  .  { }1;0)( ∉Nv jX ( )1;0∈jXv
     Then we replace  by  and GO TO 
label L0 and resume the cycle DO loop.  

N NNN >','

     Version 3. One uses the matrix  and 
compute the maxim element on each line 

 . We denote it by 

)(NV

nXX ,1, = 0)(* =Nv jX  . If 

8.0,)1;()(* >∈ εεNv jX  ( for example ) then we set 

 and all the other elements 

 on the line X. (winner-take-all). 

The resulting matrix is denoted , where l  
means the work on lines. Analogous we can compute 
the maxim element  on each column 

 . So we obtain the matrix  , where the 
letter  means the work on columns.  

1* =jXv

*,0)( jjNv jX ≠=

)(* NVl

)(* Nv jX

nj ,1= )(* NVc
c

     Compute the routes described by matrices  

,  and take the best one. GO TO  L4.  

)(* NVl

)(* NVc
     L4  CONTINUE  
     Step 4. Print the final results :  
      or  ,  and the route ,N )(* NVl )(* NVc )(NE *R  .  
            STOP  
            END  
6  Application  
Let  be with the value  and the distances 
between the towns a, b, c, d given by the matrix 

 . Apply the above algorithm to 

find the best route.  
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     Solution. We use the parameters  
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)1(V

     952.351 =Σ  , 952.352 =Σ  , 252.03 =Σ   
     56.3694 =Σ  ;  and so on.  84.22707)1( =E
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