
Real-Time Communication between MATLAB/Simulink and PLC via
Process Visualization Interface

PETR PIVOŇKA, VOJTĚCH MIKŠÁNEK
Department of Control and Instrumentation

Brno University of Technology
Kolejní 4, 612 00 Brno
CZECH REPUBLIC

Abstract: - This paper shows real-time implementation of control algorithms from a simulation environment into the
Programmable Logic Controller (PLC). Development of control algorithms is necessary for their use in a simulation
environment and verification on simulation models. The real control system should be connected to the simulation
environment with a PLC to test the control algorithms on a real physical model. In this case the PLC is used only as an
IO device and all computations are performed in the simulation environment – MATLAB/Simulink. This connection is
ensured via a general process visualization interface, which can transmit a data via different communication protocols:
Ethernet, RS232, CAN or ProfiBus. Finally, the control algorithm should be implemented into the PLC and
MATLAB/Simulink can be used for monitoring of the process input, output or others parameters. All implementation
steps are shown on one of advanced control algorithms – the Generalized Predictive Control.

Key-Words: - PLC, Real-Time, MATLAB, Simulink, Predictive Control

1 Introduction
At first, the control algorithms is developed in a
simulation environment (MATLAB/Simulink) and tested
on simulation models. After that MATLAB/Simulink
can be connected with a PLC, and the algorithm is tested
on a physical model. This connection provides real-time
communication between MATLAB/Simulink and the
PLC (B&R 2005), which is an advantage for the
development of control algorithms, especially extended
and advanced control algorithms. Control algorithms
have to be written in a universal programmable language
supported by both MATLAB and PLC, because of its
transmission into the PLC.

2 PLC B&R System 2005
The programming of the PLC is carried out using the
B&R Automation Studio and several programming
languages are available: Automation Basic, ANSI C and
languages in international standard IEC 1131-3 (Ladder
Diagram, Sequential Function Chart, Structured Text
and Instruction List).

2.1 Process Visualization Interface
The PVI is a modular environment for operation systems
MS Windows. This environment provides
communication between PLC B&R and different user’s
applications, including B&R Automation Studio. The
PVI can transmit a data via different communication
protocols (RS232, Ethernet, CAN, etc.). By using the

PVI the MATLAB/Simulink is able to have access to
automation components.

2.2 CLIENT mk_pvi
The standard programmable tool (e.g. MS Visual C++)
and libraries PVI enable us to make own tools for
communication with PLC (clients). The client mk_pvi,
which is used for real-time communication was
developed in [3].

3 MATLAB/Simulink
MATLAB is a high level language and simulation
environment for technical computing. MATLAB is
foundation for Simulink – the graphical platform for
simulation and model-based design for dynamic system.
Besides the prepared blocks from Simulink toolboxes, it
is possible to write user’s own blocks and add them to
Simulink models. Those blocks are called S-functions
and can be written in MATLAB (M-file S-function) or in
ANSI C (C MEX S-function). C MEX S-function has to
be compiled to Microsoft Windows 32-bit linked
libraries (DLL). Moreover, the control algorithm from C
MEX S-function is directly transmittable into the PLC.

3.1 FIRST PART
The development of control algorithms can be divided in
three parts. In the first part, the control algorithm is
developed in a simulation environment
MATLAB/Simulink in programmable user’s blocks – S-
functions. S-functions can be written in M-file or in

Proceedings of the 11th WSEAS International Conference on SYSTEMS, Agios Nikolaos, Crete Island, Greece, July 23-25, 2007 28

ANSI C. A big advantage of M-file S-functions is
simplification of matrix algebra implementation
although writing of control algorithms in C is also
necessary because of its transmission into the PLC. In
this part, the control algorithms are tested and verified
on simulation models. The block diagram of the first part
of implementation is shown in Fig. 1.

Fig. 1: Block diagram of the fist part of implementation

3.2 SECOND PART
After testing and verification of the control algorithm on
a simulation model, it is necessary to test it on a physical
model. For real-time communication between
MATLAB/Simulink and the physical model controlled
by the PLC the developed PVI client mk_pvi [3] is used.
In this part of development the PLC B&R 2005 is used
only as an IO card and MATLAB/Simulink receives a
data from the physical model output and sends the action
value to the physical model input. MATLAB/Simulink
and PLC are connected via Ethernet. In this part, the S-
function must be written in C. For debugging C MEX S-
function Microsoft Visual C/C++ .NET [2] can be used.
The second part of implementation is shown in Fig. 2.

Fig. 2: Block diagram of the second part of
implementation

3.3 THIRD PART
In the last step, the control algorithm is transmitted and
the real model directly controlled by the PLC. The
connection between MATLAB/Simulink and PLC can
be used only for real-time monitoring of process inputs,

process outputs or other control parameters. This
monitoring of PLC by MATLAB/Simulink is shown in
Fig. 3.

Fig. 3: Block diagram of the third part of implementation

Both S-functions and B&R Automation Studio Project
are generally separable in two main procedures:

• mdlInitializeSizes (M-file S-function),
static void mdlStart (C MEX S-
function) and _INIT void init (PLC)
procedures provide initialization of variables.

• mdlOutputs (M-file S-function), static
void mdlOutputs (C MEX S-function) and
_CYCLIC void _cyclic (PLC) procedures
provide the control algorithm each sampling
period.

Those two procedures are directly portable from C MEX
S-function into PLC.

4 Simulation Experiment
In this part, the difference between the behavior of
simulation and that of the physical models is shown. The
simulation model was obtained by using Neural Network
(NN). For training NN the Levenberg-Marquardt
algorithm [8] was used. For comparison of both models
one of the advanced control algorithms was chosen,
especially the Model Predictive Control (MPC).

3.1 GENERALIZED PREDICTIVE CONTROL
The MPC is not a specific control strategy but an ample
range of control methods where the control signal is
obtained by minimizing an objective function. The
Generalized Predictive Control algorithm is one of the
most popular methods of predictive control, which
consists in applying a control sequence that minimizes a
cost function (1).

Parameter1
Parameter2

…

mk_pvi Output1
Output2

…

Simulink

Ethernet

Physical
Model A/D

converter

D/A
converter

PLC B&R

Control
algorithm

Reference
Value

Control
algorithm

mk_pvi Process
output

Simulink

Ethernet

Physical
Model A/D

converter

D/A
converter

PLC B&R

Reference
Value

Control
algorithm

Model of
Process

Model
output

Simulink

Proceedings of the 11th WSEAS International Conference on SYSTEMS, Agios Nikolaos, Crete Island, Greece, July 23-25, 2007 29

() () ()[] ()[]∑ ∑
+

+= =

−+∆++−+=
dp

dj

r

j

jtujtwtjtyrpJ
1 1

22 1|ˆ,, λλ (1)

where ()tjty |ˆ + is the predicted system output in j-th

prediction step in discrete time t, ()jtw + is reference

trajectory, ()jtu +∆ is j-th increment of control action,
p is predicted horizon, r is control horizon, λ is cost
constant and d is delay. The first term considers the
predicted error and the second term considers penalized
future control increments.
The criterion (1) can be rewritten to a matrix form [4]:

() () uuwyGuwyGu TT ˆˆ ⋅+−+−+= λJ (2)
where ŷ is vector of predicted system outputs for
prediction horizon, w is vector of future references.

()
()

()

















−+∆

+∆
∆

=

1

1

rtu

tu

tu

M
u

()
()

()

















++

++
++

=

tpdty

tdty

tdty

|ˆ

|2ˆ

|1ˆ

ˆ
M

y

()
()

()

















++

++
++

=

tpdtw

tdtw

tdtw

|

|2

|1

M
w

G is matrix of dynamics:





































∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

=

=−==

−=−−=−=

=−==

=−==

pkrpkpk

rkrrkrk

krkk

krkk

u

f

u

f

u

f

u

f

u

f

u

f

u

f

u

f

u

f

u

f

u

f

u

f

110

111110

212120

111110

L

MOMM

L

MOMM

L

L

G

where ()110 ,...,, −= rxxxfy and pk ,..., 2 1,= , as

shown in [6].

For linear causal systems can be G simplified:



























=

−−−

−−

rppp

rr

ggg

ggg

gg

g

L

MOMM

L

MOMM

L

L

21

021

01

0

0

00

G

where element gj is j-th coefficient of model step
response (3).

∑ ∑
= =

− +−=
j

i

j

i
iijij bgag

1 0

 (3)

Cost function minimum (2) is obtained by making the
gradient of J equal zero [4]. The result is equation (4),
which is used for computation of the future control
action increments vector.

() ()ywGIGGu ˆT1T −+= −λ (4)
But only the first increment of control action is used for
control (5):

() ()ˆu t∆ = −k w y (5)

where k is the first row of the matrix () T1T GIGG
−+ λ .

Only the first increment of control action is used for
control (5). The close loop with GPC is shown in Fig. 4.

Fig. 4: Close loop with GPC controller.

3.2 APPLICATION OF GPC
The predictive control algorithm was written in ANSI C
(C MEX S-function) and tested on a simulation model.
The model is the cornerstone of GPC and it is obtained
by using a Neural Network with the Levenberg-
Marquardt training algorithm. The same neural network
model is used as a model of process, too. To test of the
control algorithm on a physical model, real-time
communication is used between MATLAB/Simulink and
PLC is via Ethernet using the mk_pvi client. In folowing
pictures the influence of cost constant λ on regulation is
shown. Fig. 5 shows control of the simulation model and
Fig. 6 shows control of the real process.

Reference
trajectory

w

Optimization Process

Neural
Model

y u

-
ŷ

+

GPC

Proceedings of the 11th WSEAS International Conference on SYSTEMS, Agios Nikolaos, Crete Island, Greece, July 23-25, 2007 30

0 10 20 30 40 50 60 70
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

System output

t[s]

U
[V

]

0 10 20 30 40 50 60 70
-6

-4

-2

0

2

4

6

8

10
Control action

t[s]

U
[V

]

 λ = 0,01

 λ = 0,1
 λ = 1

 λ = 0,01

 λ = 0,1

 λ = 1

Fig. 5: GPC controller implemented in MATLAB/Simulink controls simulation model of real process.

0 10 20 30 40 50 60 70
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

t[s]

U
[V

]

System output

 λ = 1

0 10 20 30 40 50 60 70
-6

-4

-2

0

2

4

6

8

10

t[s]

U
[V

]

Control action

 λ = 0.1

 λ = 0.01

 λ = 0.01
 λ = 0.1

 λ = 1

Fig. 6: GPC controller implemented in MATLAB/Simulink real-time controls real process.

Proceedings of the 11th WSEAS International Conference on SYSTEMS, Agios Nikolaos, Crete Island, Greece, July 23-25, 2007 31

4 Conclusion
In this paper is shown the way of development of control
algorithms from simulation environment to direct
implementation to the programmable logic controller.
The simulation environment MATLAB/Simulink
provides a solution to writing user’s own blocks. The
controls algorithms can be written in those blocks are
called S-function which can be written in MATLAB (M-
file S-function) or ANSI C (C MEX S-function). The
control algorithm is directly portable from C MEX S-
function into PLC B&R 2005.
 Using the mk_pvi client is possible to control a real
process by a control algorithm implemented in
MATLAB/Simulink. In this case the
MATLAB/Simulink is real-time connected with the PLC
which is used only as an IO device. Another advantage
of the real-time connection between MATLAB/Simulink
is using of existing control blocks from MATLAB
toolboxes. Using the existing control algorithms from
the toolboxes is quick way to compare them with own
algorithm on real process.
 Verification of the control algorithm is necessary
because of different behavior of the simulation model of
real process and the real process. In this case the
difference can be seen as a bigger overshot in real
process as is shown in Fig. 5 and Fig. 6.

Acknowledgement:
The paper has been prepared as a part of the solution of
Czech Science Foundation GAČR project No.
102/06/1132 Soft Computing in Control and by the
Czech Ministry of Education in the frame of MSM
MSM0021630529 Intelligent Systems in Automation.

References:
[1] B&R SYSTEM 2005 – User’s Manual,

http://www.br-automation.com, 2003
[2] The MathWorks, Online Documentation,

http://www.mathworks.com
[3] Kořínek, V, Communication MATLAB-Ethernet,

Diploma Thesis, BUT FEEC 2004
[4] Camacho, E. F., Bordons, C., Model Predictive

Control, London, Springer 1999, ISBN 3-540-76241-
8

[5] Clarke, D. W., Mohtadi, C., Tuffs, P. S, Generalized
Predictive Control – Part I. The Basic Algorithm,
Automatica, 23, s. 137-148 (1987)

[6] Vychodil, H., Generalized Predictive Control with a
Non-linear Autoregressive Model. Automatic Control
Modeling and Simulation ACMOS'05. Praha:
WSEAS, 2005, pp. 85 - 89, ISBN 960-8457-12-2

[7] Švancara, K., Pivoňka, P., The Real-Time
Communication Between MATLAB and the Real
Process Controlled by PLC, TMT 2003, Lloret de
Mar, Barcelona, Spain, pp. 1077 - 1080, ISBN 9958-
617-18-8

[8] Hristev, R. M.: The ANN Book, GNU Public License,
1998

Proceedings of the 11th WSEAS International Conference on SYSTEMS, Agios Nikolaos, Crete Island, Greece, July 23-25, 2007 32

