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1 Introduction

A numerical semigroupis a subse$ of non-negative
integersN which contains the zero, is closed under
addition and generates as a group (her® andZ

symmetric (respectivelypseudo-symmetri¢ numer-
ical semigroups. This kind of numerical semigroups
have been widely studied in literature not only from
the semigroupist point of view but also by their ap-
plications in Ring Theory. In [2] it is show that the

denote the set nonnegative integers and the set of the semigroup ring associated to an irreducible numerical
integers, respectively). The greatest integer not be- semigroup is Gorestein or Kunz if the Frobenius num-

longing to S'is called theFrobenius number of S
usually denoted by (). Moreover,Sadmits a unique
minimal system of generatofs; < --- < Sp} (that s,
S={sP,as | a,...,a € N} and no proper subset
of {s1,...,Sp} generates). The integers; andp are
known as thenultiplicity andembedding dimension
of S and they are denoted by(8) andu(S), respec-
tively.

Givens; € S\ {0}, theApéry set(called so after
[1]) of Swith respect tos; is defined by AgS,s;) =
{s€ S| s—s ¢S} and it can be proved that if we
choosew(i) to be the least element i8 congruent
with i modulosy, then A(S,s1) = {O,w(1),...,w(n—
1)}. The set AfS s1) determines completely the
semigroupS, sinceS= (Ap(Ss1) U{s1}) (here(A)
denotes the monoid generated BY. Moreover,
Ap(S s1) contains in general more information that an
arbitrary set of generators & for instance, ¢5) =
max(Ap(S s1)) - St.

We say that a numerical semigrouprigducible
if it can not be expressed as an intersection of two
numerical semigroups containing it properly. From
[2] and [3] we can deduce that the class of irre-
ducible numerical semigroups with odd (respectively

ber is odd or even, respectively.

2 Preliminaries

Let S be a numerical semigroup. We say that an el-
ementx € Z is a pseudo-Frobenius numberof Sif
X ¢ Shutx+se Sfor all s€ S\ 0. We denote by R&)
the set of pseudo-Frobenius numbersof

We define inS the following partial ordera <g
bif b—aesS

In [3, Proposition 7] is proved the following
result showing the connection between the pseudo-
Frobenius number and the Ary set ofnin S.

Lemmal If S is a numerical semigroup,; & S\
{0} and {wi1,...,wit} = maximals.,Ap(S,s1), then
PY(S) = {Wi1 —S1,...,Wit —S1}.

Given a numerical semigroufy denote by
H(S) =N\S

EH(S) = {xe H(S) : 2xe S x+se Sforall s S\ {0} }.
The set EHS) is a subset of R@) and thus

even) Frobenius number is the same that the class of #EH(S) < #PG(S) < m(S) — 1. Using this definition,
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it easy to prove the next result, which describes those
elements that added to a numerical semigroup yield a
numerical semigroup.

Proposition 2 Let S be a numerical semigroup and
x¢ S. Then x EH(S) if only if SU{x} is a numerical
semigroup.

Every numerical semigroup containing properly
the numerical semigroufs must contain an element
of EH(S). The idea is once you have an numerical
semigroupS adding only an element we get news nu-
merical semigroupSu {xi1},...,SU {X } numerical
semigroups, such thdkg,...,x } = EH(S). Thus we
can compute a finite family of numerical semigroups
that contairS, denote it by?/(S).

In [5] it is presented tha$ is irreducible if and
only if Sis maximal in the set of numerical semi-
groups not containing(&). Then we get the following
result:

Corollary 3 A numerical semigroup S is irreducible
if and only if#EH(S) = 1.

Using the above results frowe can compute
V(S) and thusS=; S, with § € V(S) and§ irre-
ducibles.

Proposition 4 Let S be a numerical semigroup. Then
S=5nN...NS.

such that §,...,S, are the minimal irreducible
elements in/(S).

Our objective is to compare two different ways
to obtain a semigrouf as intersection of irreducible
semigroups. This algorithm is presented in [8] and
it needs to construct the set E5). We start by de-
scribing two different algorithms to compute the set
EH(S). Suppose tha= {0,s1,%,...,5,—} is a
semigroup represented as a set starting at 0 and has all
elements oSuntil s = g(S) + 1. From the definition
we can easily see that the &t (S) is finite.

Algorithm EH 1
INPUT: A semigroup5={0,s1,%,...,S,—}
1. Compute the séd(S) =N\ S,

2. Compute the sé@(S) = {x€ H(S) : 2xe S}

3. Compute the set EI9) by checking ifx+se€ S
forallxe D(S) andse S
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OUTPUT: The set EKB).
Algorithm EH 2

INPUT: A semigrou5={0,s1,%,...,S,—}

1. Compute APS,s1) = {Ap1,...,Aps, }, Apéry set
of S

2. Compute the seE(S) = maxAp(S)) with re-
spect to the partial ordet in Ap(9)).

3. ComputePGSS), the pseudo Frobenius num-
bers ofS.

4. Compute EKIS) = {x € PGSS): 2x € S}

OUTPUT: The seEH(S).
The main algorithm is the following:
Algorithm Intersection 1/2

INPUT: A semigroup5={0,s1,%,...,S,—}

1. SetR={} andE = {}.
2. Compute EKS) = {ey,...,ep}, using algorithm
EH 1/2.
3. If p=1thenRF(S) = {S} and goto step 10.
4. SetR =Su{g}fori=1,...,pandR=RU{R}
5. Setj=1andt=p
6. Compute EKRj) = {€j1,...,€jp;} and se€ =
EU{EH(R))}
7. SetRuri1 =RjU{gj«} fork=1,...,p; andR=
RU{Rsr1}
8. Ift##Rthenset =t+1, j = j+1 and goto
step 6.
9. SetRF(S) = {R,...R,} whereq is minimal
SUCh thaS: mX€RF(S) X
10. ReturrRF(S).

OUTPUT: A list RF(S) of semigroups such that
S=xerr(g X-

Proposition 5 [8] Let S be a semigroup. Algorithm
Intersection 1/2 computes a minimal set of semigroups
which intersection is S.
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3 Complexity

The complexity of these algorithms will be expressed
as function of ¢S), si,...,sp the set of generators of
Sand the size of the tree of semigroups.

The semigrouisis given by its generators so we
have complexityO(g(S)) to write Sin the forme de-
scribed in section 2. To compute the &p set ofS
we have again complexit®(g(9)).

The complexity of Algorithm EH 1

First we comput®(S) with complexityO(g(S) —
2 ). Now to compute EKS) we must testik—se S
for all se Sandx € D(S) so we achieve this with com-
plexity O(g(S)? — 29(S)). We conclude that the com-
plexity of Algorithm EH 1 isO(g(S) — % + 9(S)? —
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The value ofT is not predictable. Meaning that
we do not know any upper bound for it because it
arises from a tree structure (see [8]). We will indi-
cate in the experimental results the maximum value of
T for each set of tested semigroups.

4 Experimental results

In order to test the efficiency of both algorithms we
defined 200 random semigroups with 3 up to 10 gen-
erators bounded by 100, 200 and 300. We computed
the maximum running time (MRT) of each algorithm
and the overall average running time (ART). The re-
sults (given in seconds) are summarized in the follow-
ing tables:

e For generators with values up to 100:
4 5 6

Generators ; 3 7 8 9 10
s . 2 g MRT for Alg I | 16.3580 | 14.5800 | 13.5790 | 52340 | 5.9220 | 3.1560 | 5.5320 | 5.1710
79(8)) =0(9(9°— 79(8)) MRT for Alg2 | 16.3140 | 143740 | 13.2650 | 5.1410 | 5.7670 | 3.0470 | 5.4200 | 5.0790
ARTTorAlgl | 1.2381 | 0.071 | 0.7167 | 0.3954 | 0.5231 | 0.2343 | 0.2497 | 0.2343
. . ARTTorAlg2 | 1.2228 | 0.8918 | 0.7126 | 0.3877 | 0.5135 | 0.2275 | 0.2457 | 0.2315

The complexity of Algorithm EH 2 WaxT 1 E P 0 5 oo % %5
Average T 7290 | 5750 | 6045 | 6305 | 7.725 | 5970 | 6.040 | 5895

First we computeAp(S,s) with complexity
O(9(S) +s1). We have thatAp(S s1) = 51 and so
the complexity of ordering this set, to compe€S),
is O(s1(s1 — 1)) = O(s?). The setPGSS) is com-

For generators with values up to 200:
3 4 5 6 7 8

. . . | Generators 9 10
puted with O(4Ap(S;s1)) = O(s1) complexity. Fi-{ wrtforAlgi | 183286 | 116.424 | 107.250 | 73.407 | 57.735 | 162221 | 35.420 | 50.720
i ; it MRT forAlg2 | 184296 | 116130 | 107.283 | 72.641 | 57.216 | 162.093 | 35.704 | 50.061
nally the setEH(S) is Compmeq with .Comple)_(lt]IART f(?rrAlgl 15808 | 13.261 | 0.892 | 7.004 | 4923 | 6405 | 2.772 | 2.460
O(Sl) Hence the total compIeX|ty of this a|gor|t|~ MRTiorAlg2 | 15804 | 13116 | 9.843 | 6921 | 4.865 | 6.316 | 2.736 | 2.421
. Max T 11 24 3 38 37 75 33 a1
isO(9(S) +s1+ % +51) =0(g9(S) + ﬁ) Average T 7930 | 0710 | 11105 | 12.540 | 11860 | 12505 | 10.605 | 9.060
e For generators with values up to 300:
Generators 3 4 5 6 7 8 9 10
MRT forAlg 1 | 1139.221 | 561.259 | 456.063 | 346.933 | 798.463 | 321449 | 100.201 | 275.079
MRT forAlg2 | 1153.356 | 563.537 | 450.562 | 346.766 | 653.346 | 351020 | 99.637 | 274.061
ARTTorAlgl | 65575 | 43807 | 35525 | 27618 | 31.366 | 17.984 | 10.404 | 12.120
ARTTorAlg2 | 63.842 | 43675 | 35420 | 27.601 | 30.389 | 17.795 | 10.270 | 12.005
Max T I 36 40 2 55 51 2 55
Average T 5540 | 10.790 | 14.750 | 14970 | 17370 | 16620 | 15430 | 14.850
Remark 6 Note that if S=< s1,5 > theng(S) =
$19 — (S1+S) orinthe case where S<'s, ..., 5 > Conclusion

is a MED— semigroup themy(S) = sp —s; and thus

we can use this result above. We can see that in these The experimental data show us two different things.

cases the complexity of Algorithm EH 1 is greater than
the complexity of Algorithm EH 2.

The complexity of Algorithm Intersection 1/2

We start by computingH(S) (usingAlgorithm
EH 1/2) with complexity O(EH) described above.
Then after constructing the semigrougs= SU{e }
we computd&EH(R;) and repeat this process until there
are no new semigroups that appear. This is done with
complexity O(T)O(EH), whereT is the total num-
ber of semigroups to intersect. Finally we eliminate
those which are redundant. So the final complex-
ity of these algorithms ar®(T (9(S)2 — 29(S))) and

O(T(g(S) +2)) respectively.

The first one is that Algorithm 2 is in practice
faster then Algorithm 1,(comparing the correspond-
ing ART). The second is that, surprisingly, it is only
slightly faster, indeed the difference between the cor-
responding ART is quite small (approximately around
0.5%). The worst case scenario complexity, of the two
algorithms, are not comparable in general. This hap-
pens because there are no known relations between de
frobenius number and the multiplicity of a semigroup.
But for the particular semigroups, presented in section
3 remark 6, this relation is known and hence we are
able to compare them.
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