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Abstract: -This paper deals with the control of a class of perfectly modelled linear hybrid systems  which consist 
of two, in general  coupled,   subsystems  one being continuous -time while  the  second one is digital. The 
control objective has a double nature and it consists of the achievement of separate continuous-time and discrete-
time model- matching objectives with respect to two predefined stable reference models.  It is achieved  by 
synthesizing a dynamic hybrid controller  consisting of a continuous subcontroller and a discrete one. Each of 
those controllers has its own control objective. 
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1. Introduction 
Hybrid systems have received important attention in 
the last decades see, for instance, [2]-[5], [11-13]. In 
particular, the optimization of inputs and the 
fundamental properties of such systems have received 
attention in [2] and the multirate sampling of such 
systems has been studied in [10] and [3]. The 
importance of those systems arises from the fact that 
continuous and digital subsystems usually operate in a 
combined and integrated fashion. Another important 
reason to deal with such systems  is that it becomes 
sometimes suitable the use  of either discrete-time or 
digital controllers  for continuous plants by  
technological implementability reasons, [8] -[9] .In 
this paper, a wide class of linear hybrid systems 
proposed in [2]and  also dealt with in [3] is considered 
in the context of model-matchingdesigns. Such 
systems are characterized by the continuous substate 
being forced by both the current input in continuous 
time and its sampled value at the last preceding 
sampling instant as well. The objective  of  this  paper  
is  the  design of an hybrid controller that allows the 
hybrid  plant to achieve ,  in  genera  l, separate 
continuous - time and  discrete -time  model- following 
objectives  in the  perfectly  modelled  situation.  In 
this way,  the continuous-time and discrete-time 
closed-loop dynamics can be separately designed 
through the synthesis of two subcontrollers  which  
give together the overall , in general, hybrid controller. 
The subcontroller designed for accomplishing with the 

discrete-time control objective has a discrete-time 
nature while that designed to accomplish with the 
continuous-time objective is of a mixed continuous-
time and discrete-time nature.  Several particular cases 
which are included in the general framework are for 
instance: 
 
(a) The choice of only a continuous-time reference  
model. Thus, its digital transfer function is used as 
discrete model for controller synthesis at sampling 
instants. 
(b) The use of only a discrete-time reference model 
under a piecewise constant plant input  inbetween 
sampling instants.  In such a case, the overall scheme 
becomes a  discrete-time one.  
(c) The use of the discrete-time reference model for 
periodic testing of the current closed-loop 
performance designed for a continuous-time reference 
dynamics. If the test fails then the continuous-time 
objective can be  on - line modified  in terms of re-
adjustment of the input to the (continuous-time) 
reference model or  high-frequency gain re-adjustment 
to modify either  the transient reference signal or the  
steady-state reference  set point. Each subcontroller is 
designed  for  the achievement of  the corresponding 
model-following objective in the absence of plant 
unmodelled dynamics . Also, as a part of the design , 
each subcontroller generates a compensating signal to 
annihilate the coupling signals generated from the 
continuous  signals to the discretized output , for the 
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discrete-time control objective , or viceversa. when 
dealing with the continuous control objective.  Such 
coupling signals are inherent  to the structure  of the 
open-loop  hybrid plant . Finally,  the  overall 
controller  is robust against a class of  unmodelled 
dynamics and uniformly bounded state and 
measurement noises.  
 
2. Hybrid plant description  
2.1 The  hybrid plant  
Consider  the  next single-input single-output hybrid 
linear system ( Kabamba and Hara; De la  Sen  1996 ): 
 

[k]dxcdA[k]cxscA(t)cxcA(t)cx ++=&    
        + b c u (t)+ b cs u[k]                                         
x d [k +1]= A d x d [k ]+ A d s x c [k]+b c u(t)+b cs u[k]   
y( t ) = c c

T x c (t) +c c s
T x c [k]+ c d

T x d [k]+ d c u(t) + d d u[k]  
                                                                             (1) 
for t ∈  [ kT , ( k+1) T ) ; all integer k ≥ 0 , with  T 
being the sampling period , where  x c (.) and x d [.] 
are , respectively,  the n c and n d  continuous and 
digital subvectors  and u (.) a nd  y (.) are  the  scalar 
input and output. The continuous  time argument is 
denoted by  '(t) '  while  the discrete time argument is 
denoted by  ' [ k ] '  and the  associated continuous and 
digital variables are denoted  correspondingly . Thus,  
a continuous variable at sampling instants is denoted  
in the same way as a digital variable so that xc[k] =x c 
( kT) and u [k] = u ( kT) in (1). In  that way , there is 
no distinction in the treatment of digital and time- 
discretized variables. The orders of all the real 
constant matrices in (1) agree with  the dimensions of 
the substates and scalar  input and output.  
 
2.2.  Description of  ( 1) at sampling instants  
The input / output solution of (1)at sampling instants 
is given by the ARMA- model :  
 
Q d (q) y[k] = Pd (q) u[k]+ Q d (q) (c Tω [k])               (2) 
for  all integer k ≥ 0 ,  where  c T =c c

T+ c c s
T  ,  Q d (q) 

and  P d (q)  are polynomials of real coefficients 
defined in  Appendix A ( see eqns. (A.4) and (A.6)  ) 
of degree  n = n c + n d  and  q is the one-step -ahead  
shift operator , i . e . , q y [k]=y[k+1] ; q u [k ]=u [k+1] 
and  q ω [k] =  ω [k+1].  The ARMA - model (2) is 
obtained from the extended discrete-time system of 
state  x[k] =[ x c

T[k] , x d
T [k]] T  obtained from (1).  

2.3.  Description of  ( 1) inbetwwen sampling 
instants  
The input / output  differential-difference relationship 
for (1)  inbetween sampling instants is given by  

 
Q c (D)Q d (q) y(t) = Pc (D) Qd (q)u(t)+Q c (D)   

                 { N c d
u ( D,q)u[k]+ N c d

ωT
( D,q)ω[k] } (3) 

 
for t ∈ [ kT , ( k+1) T ) ; all integer k ≥ 0 , with q and 
D  being the one-step ahead time -shift and time-
derivative  defined  by q v( t ) = v ( t + T ) and 

(t)vD(t)v =&  , respectively , for any differentiable  
signal v (t)  in the continuous-time argument t  , where 
Q d ( q) and  P d ( q)  are  the  polynomials in (2) 
while  Q c( q) and  P c( q)  are  polynomials of degree 

n c and N c d
u  and N cd

ω  are  a  scalar  polynomial  and a  
two-variable  n c -  polynomial matrix which have 
been obtained from the above parameters but the 
parametrical definition and its development are 
omitted by space reasons. Note that the term in 
brackets in the right - hand- side of (3) is  a coupling  
signal from the  digital  substate and discretized input 
to the continuous subsystem of (1).  The description 
(3) is obtained from an extended hybrid system of 
continuous- time  substate x c(t) and  the discrete- time 
substate x[k] =[ x c

T[k] , x d
T [k]] T  used  for obtaining ( 2 

) at sampling instants . The  next simple descriptive 
example  illustrates the decomposition in continuous / 
discrete ( or digital )  state - variables  of  an input / 
output  linear mapping involving the operators D and 
q as it occurs in the general description of  (3 ).  
 
Example.  Consider  the  input/ output linear mapping  
v (t ) =  H 1 ( D) H 3 (q) δ [k ]+H2(D) υ(t)  driven by 
the discrete input δ [k ]  and  the continuous one  υ(t)  
whereH 1 (D) =

D + a
D + b

 ; H 2 (D) =
1

D + c
 ; H 3 (q) =

q + 1
q + 2

 

with a , b and c being real constants. Define now  two  
continuous-time  variables  v1 (t) and v 2 (t)  and a 
digital variable  δ 1 [ k ]  given by the dynamics  v1 (t) 

=   D + a
D + b

 δ 1 [ k ], v2(t) = 1
D + c

 υ(t) and v 3 [ k ]  = 

q +1
q + 2

δ [k] . The state-space is: 

 
v(t ) = v 1(t )+ v 2 (t )+ v 3 [k]  

]k[v)ba()t(vb)t(v 3
'
1

'
1 −+−=&   

v 1(t) = v 1
' (t)+v 3 [k ]   

)t()t(vc)t(v 22 υ+−=& ; 
v 3 [k] = −2 v 3[k −1]+ δ [k] + δ [k −1]  
subject to initial conditions  v i ( 0) =  v i 0  (i = 1, 2)  
and   v 3[0] = v 3 0.                                              �  
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Remark  1 . The description of (3) also describes 
eqns. 1  at sampling instants  and results to be  
 
Q c(D)Q d (q) y[k] = [Pc (D)Q d (D)  
    + Q c (D)N c d

u (D,q)]u[k] + Q c (D)N c d
ω T

(D, q) ω[k] 
whose discrete-time solution is  (2). Note through a 
comparison with (3) that the parametrization of the 
differential- difference solution to (1) becomes 
modified at sampling instants with respect to the 
intersample parametrization  since  additive  terms  
involving the sampled continuous substate and 
sampled input  result from the plant parametrization 
given by  (1) at sampling instants.                        � 
                                                                                                                                                                                                       
2.4   Global  exponential  stability conditions for  
the open-loop  plant  
The global  exponential stability of the unforced 
system (1) is only dependent on the stability of  the 
  A -matrix defined by 
 

 e A c T [ I + ( e − A c τ d τ0
T

∫ ) A c d] e A c T ( e − A c τ d τ0
T

∫ ) A d
A d s A d

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥   

                                                                             ( 4 ) 
 
obtained after omitted calculations . This follows from 
building the extended unforced discrete dynamics x [k 
+1]  =  A x[ k ] with x [ k ] =  (x c

T [k] , x d
T [k]  )T . 

Thus, the continuous - time solution of the continuous 
substate  in  ( 1)  satisfies : 
 
x c ( k T+ τ )= [e A c τ ( I+ e − A c τ ' dτ '

0

τ

∫ )A cs )  

                     , e A c τ ( e − A c τ ' d τ '
0

τ

∫ )A c d ]x[ k]          

all integer k  ≥ 0  and all real  τ ∈ [ 0 , T  )  . Thus , if  
A  is  strictly Hurwitzian , then  x d [ k ]  →0 , x  c [ k]  
→0  and   x  c ( k T +  τ )  →0  exponentially fast as   
k  →∞  for all  τ ∈ [ 0 , T )  and for  any bounded real  
constant x [0]  . The next result , whose proof is 
omitted, is concerned with the  stability of  the A  - 
matrix under  that of  A c  and  A d   provided  that  
the  coupling  signals between  continuous and 
discretized  ( or , indistinctly, digital ) variables  are 
sufficiently small. 
 
Proposition 1 .  Assume  that  A c and A d are strictly 
Hurwitzian with their maximum eigenvalues  
satisfying : 
e − ρ' T ≤ λ max ( e A c T )    
           ≤ e − ρ T( i. e., − ρ ≤λ max ( A c ) ≤ − ρ' )   

and λ max ( A d) ≤ e − ρ T for some positive real 
constants ρ and ρ'  with  ρ'  ≥  ρ   .Thus, the open-loop 
unforced plant is globally exponentially stable if  

λ max (
A c s A d

A ds I
⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ ) < Min( e ρ T − 1 ,

ρ' ( e ρ T − 1)
e ρ' T −1

) . 

 
3. Controller synthesis  
3.1 General design philosophy and  Assumptions   
The controller  to be synthesized will consist  of two 
subcontrollers each  one  being designed  to satisfy a 
different ( respectively,  continuous-time or discrete - 
time ) control objective , namely : 
 
Objective  1 :  u [ k ] =  u [ k T ]  is generated  in such 
a  way that a prescribed stable discrete reference 
model of transfer function W m d ( q )  is matched at 
sampling instants. A discrete subcontroller 
(Subcontroller 1) which will be then synthesized 
accomplishes with this control objective.  As a part of 
the design , the coupling signal  in (2) from the 
continuous-time  subsystem to the discrete - time  
subsystem , caused by the signal  ω [ k ]  =  
e A c T ( e − A c t

0

T

∫ u (k T + t )dt ) b c  ,that includes the 

contribution of the continuous-time input over one 
sampling period to the output at sampling instants ,  is 
annihilated by synthesizing the appropriate 
compensator as addressed below.  
 
Objective  2  :  u  ( t )  ( t ≠  k T  )  is generated  in 
such a  way that  the closed-loop system matches a  
prescribed stable continuous-time  reference model of 
transfer function W mc (D) inbetween sampling 
instants.  A mixed  continuous / discrete  subcontroller  
( Subcontroller 2 ) is synthesized  to accomplish   with 
such a control  objective.  As a part of the design , the 
couplings between the discretetized signals  u [ k ] and  
ω [ k ]  and the continuous subsystem  are   cancelled  
by synthesizing the appropriate compensator  as 
addressed below.                                                  �  
 Since  u [ k] and u ( t ) , t∈[ k T , ( k+1) T ] , all 
integer k ≥ 0  are , in general , synthesized  to satisfy 
two different control objectives , discontinuities of the 
control input at sampling instants occur in general. 
Also , there are input discontinuities caused  by  the 
influence  in the  feedback signals of  the modification 
of the digital substate at sampling instants while it is 
kept constant inbetween sampling instants.  When 
suitable, the two  reference  models  can be 
appropriately related to  each other  in order to  state 
the problem with a unique control objective as 
discussed later. Those input discontinuities translate in 
output discontinuities at sampling instants  in the more 
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general case  when  W mc ( D ) and Wmd ( q)  are 
chosen independently.  The combined objective can be 
intuitively figured as of the actions of  Subcontrollers  
1- 2  synthesized to satisfy the  Control  Objectives 1 - 
2 . There are two control channels  integrated in  the 
actuator that generate the input ' at ' and ' inbetween' 
sampling instants  as u ( t ) = u ' [ k ]  ( t = k T )  ;  u ( t 
) =  u ' ( t ) (  t  ≠  k T  )  Channel 1 is used  to  
generate ( inbetween sampling instants )the input for 
model -matching of W md ( q )  while Channel  2 is 
used to match  W mc ( D ) . Note that once Channel 1 
modifies its state,  it supplies  u [ k ]  at  sampling 
instants  .  
 
Assumptions  
1.  P d  ( q)  and   P c ( D )   have all their zeros  in  
q <1 and  Re ( D ) < 0 . 

2.  All common zeros  of  P d (q)  and  Q d ( q ) 
 (of P c (D)  and   Q c (D) ) , if any , are strictly  
Hurwitzian  and closed - loop  zeros and poles  of the 
discrete-time  ( continuous- time ) dynamics , i. e . , 
they  are  zero- pole cancellations of  W md (q)  in  
q <1 ( of  W mc ( D)  in Re (D)<0  ). Also, the   

zeros   of  P c (D)  and    P d (q)  which are cancelled 
by the controller, if any,  are closed- loop  poles and 
thus poles of   W mc ( D) and  W md ( q  ) , 
respectively .  
3. W mc ( D) and  W md ( q  ) are proper ,  strictly 
Hurwtzian and  of  relative orders  non less than those 
of   P c (D) / Q c ( D) and P d (q) / Q d ( q ) , 
respectively.                                                      � 
Note  that  Assumption 1 means that both ( open-loop) 
discrete and continuous-time descriptions eqns. 2 and 
3 are inversely stable. Assumption 2 means that if any 
of the discrete or continuous plant dynamics is 
uncontrollable (i.e., there are zero-pole cancellations ) 
then the associated uncontrollable modes have to be 
stable and closed-loop poles of the corresponding 
dynamics. Note also that if  d= d c +d d ( d c)  is  
nonzero in  (1)  then  P d (q) / Q d ( q )  ( P c (D) / Q c 
( D)  )  is nonstrictly proper and  then the realizability 
of Subcontroller 1 (Subcontroller 2 )  is realizable for 
any realizable W md (q ) (W mc ( D) ).  Thus, the 
relative order constraint of Assumption 3 holds 
automatically under the realizability of the discrete-
time (continuous- time) reference model  guaranteed 
by  its  properness of the first partof the assumption.  
 
3.2 Objective 1 : Synthesis of Subcontroller 1  and  
Generation of u [ k ] = u ( kT)  

The discrete control is designed to achieve Objective 1 
when the plant (1) is known and noisy-free: 
 
u[k]=

G 1d (q)
L d (q)

u[k]+
G 2d (q)
L d (q)

y[k]    

          + G 3d
T (q)

L d (q)
ω [k] +

R 1d (q)
L d (q)

r 1d [k]   (5) 

all integer k  ≥ 0 . The compensating signal r 1d [ . ]  is 
forwarded to the plant input from the  reference model 
input  r d [k] and  ω [k] =  

( e A c (T− τ )

0

T

∫ u(k T + τ) dτ )b c   according to  generation 

laws given below . All  the  transfer functions in the 
above  control law are expressed as quotients of 
polynomials and realizable. The above law is 
explicited as follows: 
 
u[k]= C y u

d (q) y[k] + C ω u
d T

(q) ω [k]   
           + C r1 u

d (q) r 1d [k]                          (6.a) 
where the compensator transfer  functions are  

C yu
d (q) =

G 2d (q)
L d (q) −G 1d (q)

 

C ωu
d (q) =

G 3d (q)
L d (q)− G 1d (q)

 

C r1 u
d (q) =

R 1d (q)
L d (q)− G 1d (q)L d (q)

          (6.b) 

The problem of accomplishing with Objective 1  
consists of designing the polynomials  G i d (q) ( 
i=1,2) and  R1d (q), the polynomial vector  G 3d (q)  
as well as  the compensating signal  r 1d [.] , for a 
given stable  L d ( q ) so that  Wmd (q) is matched if 
the plant is perfectly known and free of unmodelled 
dynamics and noise.  The next result addresses the 
controller design :  
 
Theorem 1.  Suppose that  the control law (6) is 
applied , r d [k]  ( k ≥ 0 )is the uniformly bounded 
reference  input sequence  to  Wmd ( q ) and that the 
next  assumptions hold : 
 
4.  Assumptions 1 - 3 hold for  P d ( q ) , Q d ( q ) and  
the poles of  Wmd (q) , and that all the roots of  R 1d ( 
q )  and  L d ( q )  are in q <1 . Assume also  that  d c 
= - d d  in (1) and  deg( R 1d ) ≤ deg(L d − G1d ) .  
 
5.  P d ( q ) =  Q d (q )P d

' ( q )  and  Qd ( q ) =  
Q d (q )Q d

' (q )  where  Q d (q )  is  the strictly 
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Hurwitzian ( from Assumption 2 ) ma ximum common 
factor of  P d ( q ) and Q d ( q ). Also ,  
P d

' (q)= P1d (q)P 2d (q)  with  P 1d ( q ) being defined 
by the discrete strictly Hurwitzian plant zeros ( from 
Assumption 2 ) which are not plant poles  and  they 
are transmitted to the reference model W md ( q ) =  B 

md ( q ) / Amd ( q ) .  
 
6.  L d ( q ) is factorized as  L d ( q ) =  P 2d ( q ) L ' d 
( q )  in ( 5) .  
 
Thus , the discrete closed - loop transfer function 
equalizes that of W md ( q )  provided that 
Subcontroller 1  and its associated compensating 
signal  r 1d [.]  are synthesized as follows  :   

r 1d [k]=
B md (q)

R 1d (q) P d (q)
rd [k]  

            + L d (q) − G 1d (q)
R 1d (q)

M d c T ω[k]           (7) 

where  G 1d (q)= G 1d
' (q)P 2d (q)  , d = d c + d d  ,  

c= c c + c cs   with M d (q) being an arbitrary 
polynomial satisfying  deg ( M d ( q ) ) < deg  ( L d ( 
q) - G 1d ( q ) )  -  deg ( R 1d ) ,  G 3d (q) = 
− ( 1+ R 1d M d c ) , and  G 1d

'  (q) , G 2d ( q)  being 
polynomials which are  the  unique solution to  the 
diophantine equation  :  
 
Q d

' (q) G1d
' (q) + P 1d (q)G 2d (q)   

                     = Q d
' (q) L d

' (q) − A m d
" (q)             (8) 

 
subject to the degree constraints  deg  ( G 2d ( q )  ) <  
deg ( Q ' d ( q ) )  or  deg  ( G ' 1d  ( q )   
< deg ( P 1d ( q ) ) )  for  A m d

" (q)  being a polynomial  
satisfying the  factorizations  
 
A md (q) = Q d (q)A md

' (q)    
            = Q d (q)P 2d (q) A md

" (q)                        (9) 
 
which exist  from Assumption  2 .                  �                                                                                                                        
 
Corollaries : 1 . Theorem 1 also holds under the same 
assumptions if G 3 d is a  rational function and  the 
compensating signal  in the controller satisfy : 
 

G 3d (q)=
Q d

' (q)( G1d
' (q)− L d

' (q) )c
P 1d (q)

                 (10) 

r 1d [k]  =  1
R 1d (q)

B m d
' (q)

P 2d (q)
rd [k]                    (11) 

and all  the remaining compensators  of the control 
law  remaining identical as in Theorem 1 .  
 
2. Theorem 1  and Corollary 1 als o apply  directly to 
the regulation case  with r d [ k] = r 1d [ k] = 0  with 
the closed-loop dynamics  resulting to be A md ( q )  y 
[k] =  0 , all integer  k  ≥ 0 .                                 �   
 
The proof of Corollary 1 becomes direct from the  
application of  Assumptions  3 - 6 of Theorem 1  and 
the  use of the cancelled factors  Q d P 2 d and  
G 1d = G1d

' P 2 d  to  yield : 
 

G 3d =
Q d Q d

' ( G 1d − L d )c
P d

  

=
Q d

' ( G 1d
' − L 1d

' ) c
P 1d

⇒ C r1 u
d =

G 3d

L d
' − G 1d

' = −
Q d

'

P d
' = −

Q d
P d

  

which is  nonstrictly proper  and stable since P d is 
strictly Hurwitzian and d c ≠   d d .  The use of the 
above relationships leads to   
 
[( L d − G1d)Q d − P d G 2 d] y[ k]  
                              = Q d (q) R 1d (q)r 1d [ k]        (12) 
 
from (7)-(11) and Corollaries 1-2 follow as Theorem 
1. Corollary 2 follows when rd [k] ≡ 0.                   �                     
 
Note that the main difference  between the design of 
Theorem 1 and Corollary 1 is the choice of the 
compensator  C r1 d

d  (q) in (6).  In Theorem 1 , this  
proper compensator  of  high - frequency being  
 - d - 1 c =  -  ( d c + d d )

 -1  ( c c + c cs )  which  

cancels  the high- frequency gain of 
G 1d

' − L d
'

P 1d
Q d

' c  . 

Thus , the closed-loop dynamics does  not depend on  
ω [k] but on  ω [k-1]  and M d (q) is kept arbitrary. 
However,  the  decomposition of  all  the  transfer 
functions  from  the  components of ω [k ] to  u [k] in  
Corollary 1 with  their high- frequency gains  being  
cancelled  is not  used. The synthesis mechanism  in 
that case is  the choice of G 3d (q) such that the  
transfer function  from  ω [ k ] to  u [k] is cancelled.  
 
3. 3  Objective 2  : Synthesis of Subcontroller 2 and 
generation of u ( t )  ( t ≠  k T ) 
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The next control law is designed  for  the achievement 
of Objective 2 when the known plant is perfectly 
modelled and free- noise and  has the following  
implicit  structure : 
 

u(t) =
G 1c (D, q)
L c (D, q)

u(t) +
G 2 c (D,q)
L c (D, q)

y(t )  

+
G 3c (D, q)
L c (D,q)

u[k]+
G 4c

T (D, q)
L c(D,q)

ω[k]+
R 1c (D)
L c (D,q)

r 1c(t )
 

 
                                                                       (13) 
for  all  t ∈ ( k T , ( k+1) T ) and all integer  k  ≥ 0  , 
with r 1c (t ) being a compensating signal to be 
generated as a part of the controller design and  L c ( 
D , q) being a  strictlty Hurwitzian two-variable 
polynomial. The various filters are  formed by  two 
variable polynomials and the associated  hybrid  
realizations  can be obtained as addressed in the given 
example. The above control law becomes explicited as 
follows :  
 
u(t) =C y u

c ( D,q )y(t) + C uu
c ( D, q) u[k]   

+ C ω u
c T

( D,q )ω [k]+ C r 1 u
c (D, q) r 1c[ k]       (14) 

for  all  t ∈( k T , ( k+1) T ) and all integer  k  ≥ 0  
with  

C yu
c (D, q) =

G 2c ( D,q )
L c (D, q) − G1c (D, q)

              (15) 

C u u
c (D, q) =

G 3c ( D,q )
L c ( D,q )− G 1c ( D,q )

              (16) 

C ω u
c (D, q) =

G 4c ( D,q )
L c (D, q) − G 1c (D, q)

               (17) 

C r 1u
c ( D,q )=

R 1c (D )
L c ( D,q )− G 1c ( D,q )

        (18) 

Note that the compensators of (15)-(18) are dependent 
on D and q  because of  structure of (3) . The problem 
of fulfilling Objective 2 consists of synthesizing (14), 
subject to (15)-(18), as well as  the compensating 
signal r 1c (.) as addressed in the next result which 
applies the philosophy  of Theorem 1  and Corollary 1  
to the  problem of  model-matching  of the continuous 
reference model .  In the following, the degree of two-
variable polynomials with respect to one of the 
variables is denoted with the corresponding subscript.  
 
Theorem 2.  Suppose that  r c ( t )  is the uniformly 
bounded reference input to Wmc D) and that the next 
assumptions hold : 
7.  Assumptions 1 - 3 hold for P d (q) , Q d( q) , P c ( 
D)  and  Q c( D) and that the poles of Wmc( D)  and  

all the roots of  R 1c ( D) and L c ( D) are in 
Re (D) <0  . Assume also that  d c ≠ − d d . 
 
8.  P c (D) admits the polynomial factorization  
Q c (D)  P 1c ( D) P 2c ( D) where  Q c (D)  includes 
the  (stable ) common roots of P c ( D)  and  Q c( D) ,  
P 1c ( D) contains eventual zeros of P c ( D)  
transmitted from the plant to the reference model and  
P 2c ( D) includes the (stable) plant  zeros which are 
closed-loop poles and controller poles .  
 
Thus, the closed -loop dynamics is globally 
exponentially stable and defined by 
 
A mc (D)y(t )= B m c (D) rc(t )                              (19) 
if the compensators in (15)-(18) and compensating  
signal  r1c (t)  satisfy  G1c (D, q) = P 2 ( D , q ) 
G 1c

' (D, q) where  ( G 1c
' (D, q) ,  G 2c (D, q)) is a 

polynomial pair being a unique solution to the two- 
variable diophantine equation  : 
 
Q c

' ( D) G1c
' ( D,q) + P c

' (D )G 2 c (D, q)   
                     = L c

' ( D, q) − A m c
" ( D, q)             (20) 

with L c ( D , q ) = P 2c ( D, q ) L c
' (D,q )  and Amc 

(D, q) = Q c (D,q)P 2c (D,q)A mc
" (D,q)  subject to any 

of the two the next degree constraints  
 
deg D( L c ( D,q)− A mc ( D)) ≤deg D (G 1c (D, q))  
deg D( G2 c (D, q))< deg (Q c (D )) = deg ( P c ( D))  
                                                                      (21.a) 
deg D( L c ( D,q)− A mc ( D) )≤ deg D (G 2c (D, q))   
deg D( G1c( D, q))< deg (Q c (D )) = deg ( P c ( D))  
                                                                      (21.b) 

G 3c(D,q)=
G 1c

' (D, q) − L c
' (D, q)

Q c (D) P1c (D)Q d (q)
N cd

u (D, q)    (22.a) 

G 4c (D,q) =
G 1c

' (D, q) − L c
' (D,q)

Q c (D)P1c (D) Q d (q)
N cd

ω (D, q)   (22.b) 

r 1c (t )=
B mc

' ( D)
P 2c ( D)R 1c ( D)

r c (t)                         (22.c) 

with  B m c
' (D)  being the free- design zeros  of  Wmc 

(D)  ( i. e. , those of  Wmc ( D) excluding the factor  
Q c ( D)P 1c (D)  ).                                                 �   
The proof is omitted by space reasons. Note   that 
Theorem 2  applies the same philosophy for pole-
placement  for the continuous reference model as  the 
previously  used for the discrete one  in Corollary 1 
since the  coupling  signals from the discrete  
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subsystems to  the continuous one are cancelled by  
the controller (14)-(17) with the compensators and 
compensating signal fulfilling (20)-(22)  while the 
compensating signal in (22.c)  is used to cancel the 
unsuitable plant zeros .  A more general choice of  r1c 
(t) based on an arbitrary design of  G ic ( D, q )  ( i = 3 
, 4) could be established in the same way as addressed 
in Theorem 1 for the discrete model  , although at the 
expense of more involved calculations .               
 
3. 4 Summary of the controller synthesis method 
and  guidelines for  particular designs of  interest   
The synthesis of the hybrid controller  for the hybrid 
plant (1) consists of firstly defining the discrete and 
continuous  reference models W md (q)  = B md (q) / 
Amd (q)  and  W mc (q)  = B mc(q) / Amc (q)   for 
uniformly bounded reference inputs  r d [ k] and  rc (t)  
, t ∈ [ k T , ( k+1)T)  and all integer k ≥0 .   Then,  u [ 
k ]   and u (t)  , t ∈  [ k T , ( k+1)T)  and all integer k 
≥0  are generated  from  (6) ,  with the compensators 
designed according to Theorem 1 or Corollary 1 , and  
(15)-(18) with the compensators designed according to 
Theorem 2, respectively. Particular designs of 
practical interest are:  
 
Design 1 (Continuous - time  reference  model ). The 
reference input to the continuous-time reference 
modelWmc(D)is piecewise continuous with 
discontinuities at sampling instants and being constant 
inbetween sampling instants and  the discrete-time 
reference model  W m d (q)   is the z - transform  of W 

m c(D) . Choose  the reference signal as  r (t) = r c (t) 
= r c [k] = r d[k] = r [k]  ,  t ∈ [ k T , ( k + 1 ) T ). 
Thus, the reference output  is generated  by a unique 
reference model for all  t ≥ 0 .  The , in general 
discontinuous , plant  input is generated from (6) and 
Theorem 1 , or Corollary 1 , for t = k T and from (15) 
-(18)and Theorem 2 for t ≠  k T .  The main difference 
of  Design 1 with respect to  Design 2 below is that  
the  plant  input  is generated at sampling instants  
from a discrete-time model - following philosophy  
while it is generated from a continuous-time model- 
matching  philosophy inbetween  sampling instants  
despite that  a unique continuous - time  model is 
available together  with  its  discretization  at  
sampling  instantse.  In other words, the diophantine 
equation solving the pole-placement problem at 
sampling instants is of a discrete nature  and it  is 
related to the q-operator while  that  used for the 
continuous dynamics pole-placement is of a 
continuous nature and it is related to the D-operator.  
 

Design 2 (Continuous- time reference model with the 
controller using periodic plant reparametrization  ). 
W m c( D ) is used as  the unique reference model at 
all time.  The use of a discrete-time reference model   
W md (q)  is omitted in this design . At each new 
sampling instant t = kT , the  continuous-time 
description of the plant is reparametrized  with the 
replacement  Pc(D) Qd(q)  → Pc(D) Qd(q) + 
Q c (D)Ncd

u (D,q)   in  (3), according to  Remark 1,  
since the right - hand -side  terms of (1.a ) and (1.c) 
that involve to u ( t ) and u [ k ] have to be summed up  
when  t = k T . Thus , (15) -(18)and Theorem 2 are 
used to generate the control signal for  each  t = k T    
with  r  (t)=r [k ]= r c  [k]. Subsequently, r1c (t) = r 1 
(t) and  r  (t)  = r c  (t)   , t ∈ ( k T , ( k + 1 ) T ) and 
the plant input u (t) is generated  from (17) and 
Theorem 2  for t ≠ k T.  The main difference of Design 
2 with respect to Design 1  is that  now  the plant input 
is always generated from Theorem 2 (i. e.,  from the 
continuous-time dynamics) with the plant involving a 
reparametrization at sampling instants (see Remark 
1). The associated pole-placement problem problem is 
given by two diophantine equations “at” and 
“inbetween” sampling instants.  
 
Design 3 (Discrete - time reference model).  The plant 
input is restricted to be piecewise continuous   with 
discontinuities at sampling instants only while being 
constant  inbetween sampling instants , i. e .,  it is 
generated by a zero-order-hold and u (t) = u [ k ] = u ( 
kT) , t ∈  ( k T , ( k + 1 )T ) . Thus , only the 
discrete-time reference model W md (q)  is used  in 
this particular design . Thus, r1 [k] = r1d [k] and  r (t) 
= r [k]= r d [k]. Simple calculus yields ω [k] =  lu [k]   

with  
 
l =( e A c ( T− t )

0

T

∫ d τ) b c  ,  which substituted in 

(2) and (6) yields directly : 
 
Q d y[k]= P d (q)u[k]                                            (23.a) 
u (t ) = u[k]= C yu

d (q)y[k]+ C r 1u
d (q) r 1d [k]          (23.b)                      

all t ∈ [ k T , ( k + 1 ) T ) with  
 

 G 1d (q) = G1d (q) +G 3d
T (q)l = G 1d

' (q)P 2d (q)        (23.c) 

 P d (q) = P d (q)+ Q d (q)c Tl                                  (23.d) 

C yu
d (q) =

G 2d (q)
L d (q) − G 1d (q)

                                    (23.e) 

C r 1u
d (q) =

R 1d (q)
L d (q)− G 1d (q)

                                   (23.f) 
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the model- matching problem is solved by  applying 
the controller to the plant by recombining eqns. 26.a  
while solving the diophantine equation ( 8 ) with the 
replacement  G 1 d →G 1d  in the solution polynomials  
G 1d

'  and  G 2 d  , which are unique if  deg (G 1d
'  ) = deg 

( P 1d ) -1  and the compensating signal  r 1 (t) = r 1 [ 
k ] = r 1d [k] = R 1d

− 1 P 2 d
−1 B md

' r [k]  ,  all t ∈ [ k T, 
(k+1)T ] and all integer k ≥ 0 . 
 
Design 4  (General combined continuous - time and 
discrete-time reference models  with large sampling  
periods ). This design keeps  both Objectives 1-2. The 
discrete-time reference model W md (q)  is designed 
with a large sampling period compared to the 
dominant  constant of the continuous- time  subsystem 
while keeping Assumption 3. I this context,  Objective 
2 over the continuous- time reference model W mc (D 
) is the basis of the overall design . Objective 1 is used  
for periodic testing of the closed-loop performance  
and eventual re- adjustment of the continuous-time 
model in case of performance' s test failure. If such a 
test fails  in terms  of excessive deviations of the 
sampled output from its neighbouring values  
generated by Objective 1 then  either the  high- 
frequency gain  of  Wmc ( D) or  its  reference input rc 
(t) can be  re-updated appropriately. This model re-
updating procedure makes justifiable the use of two 
separate continuous-time and discrete- time reference 
models and two associated control objectives as stated 
in the general design procedure.  
 
4. Concluding Rermarks 
This paper has dealt with the model - following design of a 
class of single- input single- output linear hybrid systems  
which consists of a continuous-time subsystem and a  
digital one which are coupled in general . The design 
philosophy is the simultaneous use of a continuous - time 
model to be matched inbetween sampling instants as well as 
a discrete- time  one which has to be matched at sampling 
instants .  
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