
Specifying Module Interfaces with Finitely Defined Automata

RYSZARD JANICKI∗
McMaster University

Department of Computing and Software
Hamilton, Ontario, L8S 4K1

CANADA

Abstract: The use of automata as a specification tool is analyzed. Trace Assertion Method (TAM) is used as an
example. TAM is a formal method for specifying module interfaces. It treats the module as a black box, and was
designed as an alternative to an algebraic specification technique [1], and became quite popular in the software
industry [13]. Finiteness and concurrency issues are discussed.

Key–Words: trace assertion, automata, module interfaces, formal specification

1 Introduction

Let us start with the following fundamental question:
“What is the basic tool used to model systems?”. In
classical science and engineering the answer would
be equations. For instance to model the relationship
between acceleration and and distance we write the
equation

ds = vdt = atdt ⇒ ds

dt
= st ⇒

s =
∫ t

0
atdt =

1
2
dt2.

In Computer Science and Software Engineering the
answer is not so obvious, but I believe the an-
swer would most likely be automata (state machines,
transition systems) or algebraic equations (fixpoints).
The equivalence of automata (state machines, transi-
tion systems) and algebraic equation (fixpoints) ap-
proaches will be discussed in a sequel, however
the automata (state machines, transition systems) ap-
proach seems to be superior at least from the point
of view of practical applications. The concept of an
automaton (state machine) is very well understood by
most of engineering and computer science graduates.
However, there are still many unnecessary but fre-
quent assumptions and conventions that prevent from
even more frequent use of this concept. Most of the
unnecessary assumptions and conventions belong to
the following list:

• the set of states is finite,
• the set of transitions (actions, symbols) is finite.
• there is only one transition function (relation).

∗Partially supported by NSERC of Canada Grant

• graphical representation is a major motivation.
• the states and transitions (actions) are considered

as abstract entities related only by a transition
function.

• the transition function is an abstract entity not re-
lated to states and transitions.

• the use of expressions as a specification tool is
marginal.

We do not define the function “add 3” as f : Int →
Int and f(1) = 4, f(2) = 5, f(3) = 6, etc., we just
write and expression f(n) = n + 3. However when it
comes to automata, the expressions are not frequently
used to define information flow.

Let us consider the following popular example: a
bounded stack of integers, with the maximal length
equal to size. It could be easily specified as the fol-
lowing automaton:

States: sequences of integers as 1.3.2.3, 56.1, ε =
empty sequence, etc.,
Actions/Alphabet: push(i), pop, top:i,
Transition Function: δ : States × States → States,
where

δ(x, push(i) =

{
x.i length(x) < size
x length(x) = size

δ(x, pop) =

{
y x = y.i
ε x = ε

δ(x, top:i) =

{
x x = y.i
nil x = ε

The automaton is interpreted, as states and ac-
tions are no longer abstract, it is finitely defined, since

Proceedings of the 11th WSEAS International Conference on COMPUTERS, Agios Nikolaos, Crete Island, Greece, July 26-28, 2007 108

the states, actions, and the transition function are com-
pletely defined by a finite set of expressions and equa-
tions. Note that all the equations are closed and ex-
plicit.

As an another example let us consider the ADT of
Integers:

States: integers,
Actions/Alphabet: integers,
Transition Functions (four):
δ+, δ−, δ×, δ/ : States × States → States, and
δ+(i, j) = i + j, δ−(i, j) = i − j
δ×(i, j) = i×j, δ/(i, j) = if j �= 0 then idiv3 else nil.

It is a well established fact that state machine
(not necessary finite) models and algebraic models are
equivalent ([4, 5]). This relationship differs for differ-
ent machines and algebras, but the general idea of the
relationship may be illustrated as follows:

δ(p, a) = q︸ ︷︷ ︸
state machine

⇔ a(p) = q︸ ︷︷ ︸
algebra

,

where δ is a transition function of a state machine with
a as a function name, and a(p) is a function named a
applied to p.

Often automata models are better suited for speci-
fying and analyzing concrete software systems, while
algebraic models are better suited for defining more
abstract and general theories.

Let consider the example of a stack again. The
most popular algebraic specification of this module
looks as follows:

pop(push(s, a) = s
top(push(s, a) = a

The Algebraic Specification have the following
properties:

• Implicit open equations.
• Elegant solutions for “regular cases”,
• Problems with “irregular cases”, as

“stack is bounded”, when it is full then push may
either do nothing or deletes the bottom.

• Equations are not obvious for complex cases.
• Non-determinism and concurrency make the

model very complex.

The properties of Automata base specifications
are complimentary to the Algebraic Specification
properties:

• Explicit closed equations.
• Usually uglier solutions for “regular cases”.
• “Irregular cases” are handled easily.
• Equations can be obtained naturally for complex

cases.
• Non-determinism and concurrency only slightly

increase the complexity of a model.

The differences described above were the major
motivation for the introduction of the trace assertion
method (see [13]). The trace assertion method was
first formulated by Bartussek and Parnas in [1], as
a possible answer for some of the problems with al-
gebraic specifications [19], like specifying a bounded
stack (bounded modules in general). It also can avoid
the problem of overspecification in model-oriented
specifications, e.g. [13]. Since its introduction the
method has undergone many modifications [8, 15, 13].
In recent years, there has been an increased interest in
the trace assertion method [13]. Despite many impor-
tant industry applications (see [9]), solid mathemati-
cal foundations of trace assertion method have been
provided only very recently, see [3, 13, 12].

The trace assertion method is based on the follow-
ing postulates:

1. Information hiding [16, 17] is a fundamental
principle for specification, so we describe only
those features of a module that are externally ob-
servable;

2. Sequences are simple and powerful tool for spec-
ifying abstract objects;

3. Explicit equations are preferable over implicit
equations like those of algebraic specifications;

4. State machines are simple and powerful tools for
specifying modules.

As stated above, the fundamental difference be-
tween algebraic specification and the trace assertion
method is that algebraic specification supports im-
plicit equations, while trace assertion method uses ex-
plicit equations only.

The areas of applications for algebraic specifica-
tions are different than for the trace assertion method.
The algebraic specification is better suited for defin-
ing abstract data types in programming languages (as
SML, LARCH, etc., see [19]). The trace assertion
method is better suited for specifying complex inter-
face modules as for instance communication protocols
[8]. A very wide bibliography concerning the Trace
Assertion Method can be found in [13].

2 Introductory Examples

We shall consider the following simple modules:
Queue, Drunk Queue, Very Drunk Queue, Concur-
rent Queue and Concurrent Drunk Queue. The Queue
module provides four access programs: insert(i) -
which inserts an integer i to the rear of the queue, re-
move - which takes no argument and removes the first
element of the queue,
front - which takes no argument and returns the value
of the first element of the queue,

Proceedings of the 11th WSEAS International Conference on COMPUTERS, Agios Nikolaos, Crete Island, Greece, July 26-28, 2007 109

rear - which takes no argument and returns the value
of the last element of the queue.

Since a trace specification describes only
those features of a module that are externally observ-
able, the question of what an atomic observation is
arises. Following [13], we assume that an atomic ob-
servation is a pair

(ap(ar), vr)
where ap = access program, ar = arguments,
and vr = value returned, written as

ap(ar):vr.

No argument and no returned value is represented by
nil, however we also adopt a convention of omitting
nil, in particular as arguments. Hence, the Queue
module has the following atomic observations, called
call-responses: insert(i) : nil, remove(nil) : nil,
front(nil):a, rear(nil):b, or, when nil’s are omit-
ted: insert(i), remove, front :a, rear : b, where a
is the value of first element of the queue, and b is the
value of the last element in the queue.

Intuitively, a state of the queue is determined
by a finite sequence of integers, the last ele-
ment of the sequence represents the rear of the
queue, and the first represents the beginning of
the queue. Note that every sequence of properly
used access programs leads to exactly one state.
For instance insert(4).insert(1).remove.insert(7) and
insert(1).insert(7) both lead to the state 〈1, 7〉. They
could be seen as equivalent and we can choose for
instance the trace insert(1).insert(7) as a canonical
trace representing the state 〈1, 7〉.

Module Drunk Queue is the same as Queue ex-
cept that the access program remove behaves dif-
ferently, namely: if the length of the queue is one
it removes the first element; and if it is greater
than one it removes either the first element or the
first two elements of the queue. Now the trace
insert(4).insert(1).remove.insert(7) may lead to two
states: 〈1, 7〉 or 〈7〉. However, each state is unam-
biguously described by an appropriate trace built from
insert calls.

The Concurrent Queue has the same access pro-
grams as Queue, but simultaneous calls are allowed,
for instance if a queue is not empty, a simulta-
neous call of insert(i) and remove is allowed, as
well as a simultaneous call of insert(i) and front,
or remove and rear. Simultaneous calls might be
represented by steps like {insert(5), remove}, and
it is more convenient to use step-traces to repre-
sent the observations. For instance the step-trace
{insert(1)}.{insert(5), front:1}.{remove,rear:5}
leads to the state 〈5〉.

The Concurrent Drunk Queue has “drunk” re-
move and allows simultaneous calls.

3 The Model

3.1 Type of Concurrency and Alphabet

We assume that executions (observations) of con-
current behaviours can fully be modeled by step-
sequences (or, equivalently stratified posets). This
means we assume simultaneity is observable and,
when restricted to single concurrent history, it is also
transitive. We also assume the a possibility of simul-
taneous execution of a and b implies a possibility of
execution in the order a followed by b, and in the order
b followed by a (see for instance [10] for discussion
of various models of concurrency). We are fully aware
of the restrictions imposed by the model we have cho-
sen. Its basic advantage is simplicity, and yet ability
to model a wide spectrum of systems.

What formally constitutes an alphabet from
which the traces are built? Let f be the name of an
access program and let input(f) and output(f) be
the sets of possible argument and result values. The
signature sig(f) is the triple:

sig(f) = (f, input(f), output(f)).
We assume that neither input(f) nor output(f)
are empty by having nil ∈ input(f) and nil ∈
output(f) as default. For example:

sig(insert) = (insert, integer, {nil}),
sig(remove) = (remove, {nil}, {nil}),
sig(front) = (front, {nil}, integer),
sig(rear) = (rear, {nil}, integer).
For a finite set E of access program names, the

signature sig(E) is the set of all signatures of f ∈ E:
sig(E) = {sig(f) | f ∈ E}.

Given E, the call-response alphabet ∆E is the set of
all possible triples, written f(x):g of access program
names, arguments, and return values:
∆E ={f(x):g | f ∈ E,x∈ input(f), y∈output(f)}.

We adopt the convention of omitting nil in signa-
tures. For example, for the queue modules we have
E = {insert, remove, front, rear} and:
∆E ={insert(i) | i∈ integer}∪{front:i | i∈ integer}

∪ {rear:i | i ∈ integer} ∪ {remove}.
For a given set E of access program names, we

also define the call alphabet ΣE and the response al-
phabet OE :

ΣE = {f(x) | f ∈ E,x ∈ input(f)},
OE = {d | ∃f ∈ E. d ∈ output(f)}.

Note that the sequences and step-sequences of
call-response event occurrences are what is really ob-
served.

3.2 Trace Assertion Specification

For every set X, let S(X) = {A | ∅ �= A ⊆
X ∧ A is finite}. Elements of S(X) will be called

Proceedings of the 11th WSEAS International Conference on COMPUTERS, Agios Nikolaos, Crete Island, Greece, July 26-28, 2007 110

steps, while elements of S(X)∗ are called step-
sequences. For instance, if X = {a, b, c}, then
{a, b}.{b}.{a, b, c} ∈ S(X)∗ is a step-sequence. Tra-
ditionally λ denotes the empty step-sequence. If it is
a set of calls a step-trace is X = ∆E for some E.

For every set X, let Rel(X) = {R | R ⊆
X × X}, and for every symmetric R ∈ Rel(X), let
cliques(R) ⊆ S(X), the set of all cliques of R, be
the set defined as follows: for every x ∈ X, {x} ∈
cliques(R) and for every finite A = {x1, ..., xk} ⊆
X, A ∈ cliques(C) iff (xi, xj) ∈ R for i �= j.

In principle a Trace Assertion Specification
is an automaton with call-response events as an
alphabet (possibly infinite), and some sequences
of call-response events (traces) as states (possibly
infinite). However, the automaton is finitely defined,
in the sense that the number of explicit equations
that define the elements of the alphabet, states and
transition function is finite. For practical applications
is is also important that the number of these equations
is small and that they are relatively simple. The
fact that the expressions are explicit (as opposed
to algebraic specification where implicit equations
are more natural) is extremely important from the
application viewpoint, even though it is not very
significant as far as the theory is concerned (see [13]
for details).

Formally a Concurrent Full Trace Assertion
Specification is a tuple:

CFTA = (sig(E), C, δ, δc ,K, enabled, t0),

where:
• E is the set of names of system calls, |E| < ∞,
• sig(E) is the signature defined by E,
• C ⊆ S(∆E)∗ is the set of canonical step-traces

(state descriptors),
• δ : C × ∆E → 2C is the sequential transition

function, and δ∗ : C × ∆∗
E → 2C is a standard

extension of δ onto ∆∗
E (see [5]). In general

an automaton that is a frame for CTA is non-
deterministic, so the range of δ is defined as 2C ,
see [13],

• δc : C × S(∆E) → 2C is the concurrent transi-
tion function, and δ∗c : C × S(∆E)∗ → 2C is a
standard extension of δ onto S(∆E)∗,

• K ⊆ C × ΣE is a competence set, if (c, α) /∈ K,
then applying the system call α at the state c is an
erroneous/exceptional behaviour, as for instance
the remove call at empty queue,

• enabled : C → 2S(∆E) is the mapping that de-
fines concurrency; it states what steps are en-
abled at each state (canonical trace),

• t0 ∈ C is the initial (canonical) state,

and the following conditions are satisfied:
1. for all c ∈ C, δ∗c (t0, c) = {c},
2. for all c ∈ C, and all S1, S2 ∈ S(∆E),
3. S1 ⊆ S2 ∈ enabled(c) ⇒ S1 ∈ enebled(c),
4. for all c ∈ C, if {α, β} ∈ enabled(c), then

δ∗(c, α.β) = δ∗(c, β.α),
5. for all c ∈ C, and all A ∈ S(∆E), if A =

{α1, ..., αk} ∈ enabled(c) then δc(c,A) =
δ∗(c, α1.αk), otherwise δc(c,A) = ∅,

6. for all c ∈ C and all a :d ∈ ∆E , if there exists
A ∈ enabled(c) such that a:d ∈ A and |A| ≥ 2
then (c, a) ∈ K.

7. for all c ∈ C and all a ∈ ΣE there exists d ∈ OE

such that δ(c, a:d) �= ∅,
8. for all c ∈ C and all α ∈ ∆E , δ(c, α) �= ∅ ⇐⇒

{α} ∈ enabled(c).

Condition (1) guarantees that the states are
correctly and uniquely defined by canonical traces.
The second condition says that every non-empty
subset of an enabled step is also an enabled step at the
given state c. This means we do not enforce maximal
concurrency (see [11]). Condition (3) enforces the
rule that simultaneous executions of {α, β} implies
that both α followed by β and β followed by α
are possible orderings. Condition (4) defines the
concurrent transition δc by the sequential transition δ.
As a matter of fact, the concurrent transition function
δc is redundant, since it is fully described by δ and
enabled, however it makes theoretical considerations
and definitions easier and more readable. However
in concrete examples it is usually omitted (see an
example in Figure 1). The fifth condition states
that concurrent activity is restricted to normal non-
erroneous behaviour. Any exceptional activity must
be sequential. This follows from the suggestions of
practitioners who recommend not to mix concurrency
with erroneous behaviour, since the results might
become difficult to handle. Condition (6) is based
on the observation that we cannot practically forbid
the use of system calls “illegally” (there is always a
possibility that somebody will try to apply remove to
an empty queue), so the specification should be able
to handle such cases. The last condition states that δ
and enabled do not contradict eachother.

The functions δ and δc can be decomposed into
δN , δerr, and δN

c , δerr
c , as follows. For all c ∈ C and

all a:d ∈ ∆E , we have:

δN (c, a:d) =

{
δ(c, a:d) (c, a) ∈ K
∅ (c, a) /∈ K

and

δerr(c, a:d) =

{
∅ (c, a) ∈ K
δ(c, a:d) (c, a) /∈ K .

Proceedings of the 11th WSEAS International Conference on COMPUTERS, Agios Nikolaos, Crete Island, Greece, July 26-28, 2007 111

Syntax of Access Programs
Name Argument Value Action-response Full Action-response

Form Form

F ront integer F ront:d F ront:d
Rear integer Rear:d Rear:d
Insert integer Insert(a) Insert(a):nil
Remove Remove Remove:nil

Canonical Step-traces
t is canonical ⇐⇒ (t = λ ∨ t = {Insert(a1)}.{Insert(ak)}),
where 1 ≤ k ≤ size.
t0 = λ, i.e. empty step-sequence.
Enabled
if c = λ then enabled(c) = { {Insert(x)} | x is an integer}.
if c = {Insert(a)}.t1.{Insert(b)} ∧ |c| = size then

enabled(c) = { {Remove}, {F ront:a},{Rear:b}, {Rear:b, Remove} }.
if c = {Insert(a)} then

enabled(c) = { {Remove}, {F ront:a},{Rear:a} } ∪
{ {Insert(x)} | x is an integer} ∪
{ {Insert(x), Remove} | x is an integer} ∪
{ {Insert(x), F ront:a} | x is an integer}.

if c = {Insert(a)}.t1.{Insert(b)} ∧ |c| < size then enabled(c) =
{{Remove}, {F ront:a},{Rear:b}, {Rear:b,Remove}, {F ront:a,Rear:b}}
∪{{Insert(x)} | x is an integer}∪{{Insert(x), Remove} | x is an integer}∪

{ {Insert(x), F ront:a} | x is an integer}.
Trace Assertions

δ(t, {F ront:d}) =

Condition Trace Patterns Result

t = {Insert(d)}.t1 {t}
% d = nil t = ε {λ}

δ(t, {Rear:d}) =

Condition Trace Patterns Result

t = t1.{Insert(d)} {t}
% d = nil t = ε {λ}

δ(t, {Insert(a)}) =

Condition Result

length(t) < size { t.{Insert(a)} }
% length(t) = size {t}

δ(t, {Remove}) =

Trace Patterns Result

t = {Insert(b)}.t1 {t1}
% t = ε {λ}

Dictionary size : the size of the queue
length(t) : the length of the trace t

Figure 1: Full Trace Assertion Specification for Con-
current Bounded Queue Module

The conditions (4) and (5) guarantee that
δN
c (c, {α1, ..., αk}) = δN∗(c, α1. ... αk), and if A ∈

enabled(c) and
δerr
c (c,A) �= ∅, then A = {α} is a singleton, and

δerr
c (c, {α}) = δerr(c, α).

Lemma 1

1. δ = δN ∪ δerr and δN ∩ δerr = ∅,

2. δc = δN
c ∪ δerr

c and δN
c ∩ δerr

c = ∅. �

The functions δN , δN
c are called normal transition

and normal concurrent transition functions, while the
function δerr is called an exceptional transition func-
tion. Due to the condition (5) the function δerr

c is of
little use. The concurrent full trace assertion specifica-
tion CFTA restricted to the function δN is called con-
current trace assertion specification, denoted CTA,
while CFTA restricted to δerr is called and enhance-
ment of CTA and denoted ETA. Lemma 1 allows
us to write (informally, but correctly), CFTA =
CTA + ETA. For concrete examples, CTA (i.e. the
functions δN , δN

c) should be specified first, and an en-
hancement should be added later. Lemma 1 and con-
dition (7) guarantee that such an approach is sound.

The enhancement ETA is called plain if
δerr(c, α) �= ∅ implies there are c1 and α1 such that
δN (c, α1) �= ∅ and δN (c1, α) �= ∅. Non-plain en-
hancement means that there are some special error re-
covery states and a separate error recovery procedure
([13]). Our example in Figure 1 has a plain enhance-
ment.

We say that CFTA is deterministic iff for all
c ∈ C and all α ∈ ∆E , |δ(c, α)| ≤ 1. Note that
this implies |δc(c,A)| ≤ 1, for every state c and step
A. From the examples introduced in Section 2, Queue
and Concurrent Queue are deterministic, the remain-
ing are not-deterministic. The concept of determinism
defined above corresponds to the concept of determin-
ism used in automata theory (see [13]).

For a given CFTA, let the function
sim : C → Rel({α | {α} ∈ enabled(c)})

be defined as follows:
(α, β) ∈ sim(c) ⇐⇒ {α, β} ∈ enabled(c).

For every c, sim(c) defines simultaneity relation at the
state c.

Lemma 2
A ∈ enabled(c) ⇐⇒ A ∈ cliques(sim(c)). �

From the above lemma and condition (3) of the
CFTA definition, it follows that we may equivalently
define CFTA as CFTA = (sig(E), C, δ,K, sim, t0)
with appropriate
changes of the constraints (1) - (6). No definition is
better than the other. For the theory the definition with
δc and enabled seems to be better (see [12]), for speci-
fying the concrete examples δc is almost never explic-
itly specified, for some cases using enabled is better,
for others sim is better (compare [12]).

Constraints (1) - (6) have to be proven for every
concrete example. They are an essential part of a spec-
ification, the part which is frequently called an oblig-
ation proof in software engineering. If the specifica-
tion is thoroughly thought of, those proofs are usually
easy, but they may be labour consuming, if the speci-
fication is complex itself. The use of some automatic
theorem provers such as PVS or Simplify is highly rec-
ommended [12].

3.3 Specification Format

To be useful in practice, the trace assertion technique
must provide some reliable, readable and easy to use
specification format. This issue is completely irrele-
vant from the theoretical standpoint, but very impor-
tant if the technique is going to be used outside of

Proceedings of the 11th WSEAS International Conference on COMPUTERS, Agios Nikolaos, Crete Island, Greece, July 26-28, 2007 112

academia. The details of a specification format are
found in [13, 12]. It uses Parnas Tabular Expressions
(see [17, 14] for more details), for simple cases it ap-
pears to be self-explainatory (see Figure 1).

The technique described above is illustrated in
Figure 1, which presents a Full Trace Assertion Spec-
ification for a Concurrent Queue. The symbol “%”
in the definition of δ indicates the parts that define
δerr, i.e. exceptional behaviour. Figure 1 provides
only the first part of a specification. The second one,
“the obligation proof” is not provided. It is relatively
easy, but somewhat long so it is omitted. An interested
reader is referred to [12].

4 Final Comment

The Trace Assertion Method is an example of a finitely
defined interpreted automaton. Those automata are
characterized by

• Finite set of expressions defining states.
• Finite set of expressions defining actions (transi-

tions).
• Finite set of equations defining transition func-

tions.

Other examples of finitely defined interpreted au-
tomata are Sequence Based Software Specifications
[18], popular SCR automata [7], and very powerful
Gurevich’s Evolving Algebras [6] (also known as Ab-
stract State Machines [2]).

References:

[1] W. Bartussek, D.L. Parnas, Using Assertions About
Traces to Write Abstract Specifications for Software
Modules, Lecture Notes in Computer Science 65,
Springer 1978, pp.211-236.

[2] E. Börger, R. Stärk, Abstract State Machines,
Springer 2003.

[3] J. A. Brzozowski, H. Jürgensen, Representation
of Semiautomata by Canonical Words and Equiva-
lences, Int. J. Foundations of Computer Science, 16,
5, (2005) 831-850.

[4] P. M. Cohn, Universal Algebra, D. Reidel 1981.

[5] S. Eilenberg, Automata, Languages and Machines,
vol A, Academic Press, 1974.

[6] Y. Gurevich, Evolving Algebras 1993: Lipari Guide,
in E. Börger, Specification and Validation Methods,
Oxford University Press, 1995.

[7] C. Heitmeyer, R.D. Jeffords, B.G. Labaw, Automated
Consistency Checking of Requirements Specifica-
tions, ACM Trans. Software Eng. and Methodology,
5,3 (1996) 231-261.

[8] D.M. Hoffman, The Trace Specification of Commu-
nication Protocols, IEEE Transactions on Computers
34, 12 (1985), pp.1102-1113.

[9] D.M. Hoffman, D.M. Weiss (Eds.), Collected Papers
by David L. Parnas, Addison-Weslay, 2001.

[10] R. Janicki, M. Koutny, Structure of Concurrency,
Theoretical Computer Science 112 (1993), 5-52.

[11] R. Janicki, P. E. Lauer, M. Koutny, R. Devillers,
Concurrent and Maximally Concurrent Evolution of
Non-Sequential Systems, Theoretical Computer Sci-
ence 43 (1986), 213-238.

[12] R. Janicki, Y. Liu, On Trace Assertion Method
of Module Interface Specification with Concur-
rency, Lecture Notes in Artificial Intelligence 2005,
Springer 2001, pp. 632-641.

[13] R. Janicki, E. Sekerinski, Foundations of the Trace
Assertion Method of Module Interface Specification,
IEEE Trans. on Softw. Eng., 27, 7 (2001), pp. 577-
598.

[14] R. Janicki, A. Wassyng, Tabular Expressions and
Their Relational Semantics, Fundamenta Informat-
icae 67, 4 (2005), 343-370.

[15] J. McLean, A Formal Foundations for the Abstract
Specification of Software, Journal of the ACM, 31,3
(1984), pp. 600-627.

[16] D. Parnas, A Technique for Software Module Speci-
fication with Examples, Comm. of ACM, 15,5 (1972),
pp. 330-336.

[17] D. Parnas, J. Madey, M. Iglewski, Precise Documen-
tation of Well-Structured Programs, IEEE Trans. on
Softw. Eng., 20 (1994), pp. 948-976.

[18] S. J. Prowell, J. H. Poore, Foundations of Sequence
Based Software Specification, IEEE Trans. on Softw.
Eng., 29, 5 (2003), 417-429.

[19] M. Wirsing, Algebraic Specification, in J. van
Leeuwen (ed.): Handbook of Theoretical Computer
Science, Vol 2., Elsevier Science Publ., 1990, pp.
675-788.

Proceedings of the 11th WSEAS International Conference on COMPUTERS, Agios Nikolaos, Crete Island, Greece, July 26-28, 2007 113

