
WEB SERVICES DEPLOYMENT METHODOLOGIES
FOR WEAK PROCESSING DEVICES – AN ANALYSIS

DENIS TRČEK
Department of Communication Systems – E6

»Jožef Stefan« Institute
Jamova 39, 1000 Ljubljana

SLOVENIA

Abstract: Grids started as an approach to scientific computing and they are now gaining importance also in
commercial sector thanks to web services. These are a fine way to implement services oriented architectures
that enable organizations to expose their profiled and specialized applications so others can use them in
different application scenarios. However, exposing services that used to be of internal nature, immediately
brings security to the front line. In addition, it is a fact that many proprietary solutions already exist and that it
is infeasible to completely rewrite them to meet web services specifications. Moreover, some of these services
can not be exposed at all due to computational constraints. Thus this paper presents an analysis of possibilities
to overcome the above problems for a wider penetration of web services into business environments.

Keywords: decentralized systems, wireless applications, grids, web services, weak processing devices.

1. Introduction
Web services (WS) present a new kind of
implementation of an old paradigm about
distributed computing. Older approaches include
various technologies [1, 2]:

• classical client – server applications that the

whole internet is based upon;
• Common Object Request Broker Architecture

or CORBA, which is again a client – server
paradigm, but tailored down to objects level;

• Java Remote Method Invocation or RMI,
which is a competing technology to CORBA.

Another computing concept that is important in
relation to WS is the concept of grids. According to
[2], grids enable the virtualization of distributed
computing and data resources such as processing,
network bandwidth and storage capacity to create
a single system image, granting users and
applications seamless access to vast IT
capabilities. Put another way, grids enable users to
see computing infrastructure as a unified instance
of computing resources, just as a plug in wall
enables users to see the electricity system as a
single power plant. This enables organizations to
spread the workload to achieve optimizations, i.e.
balancing, then to achieve redundancy for handling
failures of certain sub-systems, better exploitation
of resources and tighter collaboration, even with
geographically dispersed resources. Shortly, all

resources that form a grid function as a single large
computer. And they can be, in principle, deployed
as if they were indeed a single large computer.

2. Grid and WS Standards Overview
A variety of standards exist in the grid area. One of
the first organizations to start the grid paradigm
was GLOBUS that produced specifications for
Open Grid Services Architecture or OGSA [4].
While GLOBUS can be seen as an initiative of
academic origin, there exists another grid initiative
that is market oriented. This is Enterprise Grid
Alliance (EGA) with specifications that are focused
on deployment in commercial environments [5].
These two models can be seen as complementary.

Grids can be seen as a concept, with one concrete
implementation behind this concept being WS. To
fulfill this role, WS must provide the ability to
access and manipulate states, i.e. the ability to find
and interact with a stateful resource in a
standardized manner (the WS-Resource framework
provides the necessary definitions [6]).

Further, all these processes have to be coordinated
appropriately to complete a high level task. Such
coordination is achieved mostly by orchestration.
In orchestration, one process (controller) takes
control over other needed web services and
coordinates their execution. The web services

Proceedings of the 11th WSEAS International Conference on SYSTEMS, Agios Nikolaos, Crete Island, Greece, July 23-25, 2007 358

involved are not “aware” of the fact that they are
part of some higher scenario – but the controller is
certainly “aware” of this. And for this purpose, the
controller needs explicit definitions of operations
and their order. To support orchestration, a special
language has been introduced, called Business
Process Execution Language or BPEL4WS [7].

The bottom line is that WS are defined with three
basic specifications: Simple Object Access
Protocol, or SOAP [8], Web Services Description
Language or WSDL [9], and Universal Description,
Discovery and Integration or UDDI [10]. SOAP is
a messaging protocol for exchange of information
between service requester and service provider,
WSDL is an XML based description of WS
services and inputs and outputs. Finally, UDDI is a
mechanism that supports registration of a service
and finding of this service by interested parties.

3. WS Implementation Environments
The wide variety of computing systems in current
networks can be structured into the following
categories (according to available computing
resources from most powerful to the weakest ones):

• mainframes,
• desktop and laptop computers,
• palmtop computers,
• mobile phones,
• smart-cards,
• RFID devices.

With regard to mainframe computers and
implementation of WS, no special discussion is
needed. Implementation of WS is a straightforward
task. With regard to desktop and laptop computers -
their resources are comparable and belong to the
same orders of magnitude. For both kinds of
systems, implementation of WS is a
straightforward task. With regard to palmtops –
their physical dimensions are already severely
constrained, which is reflected in their computing
potential. The situation with mobile phones is even
tougher. With regard to mobile phones and smart
cards one might quibble that these two categories
are artificial and that smart cards belong to the
same range of available computing power. This is
not the case – smart-card controllers are indeed
included in mobile phones, but mobile phones, in
addition, possess additional flash, etc. With regard
to RFIDs there is no doubt – these are the weakest
computing devices. In the table below typical

quantified key characteristics of contemporary
network devices are given.

 desk-

top
palm-
top

mobile
phone

smart-
card

RFID
circuit

processor
speed

3
GHz

0.3
GHz

0.3
GHz

7.5
MHz

20
kHz

RAM 2
GB

64
MB

18
MB

4
KB

few K
gates

permanent
storage

320
GB

128
MB

50
MB

96
KB

2
KB

network 1
Gbps

54
Mbps

54
Mbps

115.4
kbps

100
kbps

autonomy full few
hours

few
hours

none none

Table 1: Categories of networking devices with

their typical system resources

In the above table, permanent storage includes hard
disks and FLASH memory without expansion
cards. Further, smart-cards are assumed to be
processor cards and together with RFIDs, they are
assumed not to be battery powered. And finally,
RFIDs do not have processors as such – the speed
is just the speed of the clock that controls the
RFIDs’ gates operations.

4. Available Approaches to WS

Implementation
In order to implement web services for the above
variety of computing devices, the following
methodological approaches can be taken:

• Full-blown WS implementation, where a

service is built from scratch according to
complete WS specifications.

• Lightweight WS implementation, where only
certain (core parts) parts are implemented or
where existing protocols are optimized into
more compact forms or implementations.

• Wrapped WS implementation, where core
service is left as-is, but a front-end is
developed. Front-end takes care of WS
operations on behalf of the service, and
provides it in a WS manner to the outer world.

• No direct WS support, meaning that the service
cannot be made available as such, or that it has
to be completely rewritten.

The problem with the second option, of course, is
that in the majority of cases this approach clashes
with existing standards. However, it can also lead
to their future improvement. Because we wish to

Proceedings of the 11th WSEAS International Conference on SYSTEMS, Agios Nikolaos, Crete Island, Greece, July 23-25, 2007 359

conform to existing standards within this paper,
wrapped WS implementation will be analyzed.

For our analysis we will assume one very basic WS
that provides just the device’s own unique
identification. Further, we will focus on the most
extreme cases, which are smart-cards and RFIDs.
An RFID system is given in Fig. 1.

RFID
reader

back-end
system

tag's range

reader's range

RFID tag

Figure 1: RFID system

For the purpose of our analysis we built an
identification WS on a desktop computer. Our
testing environment was built by using the
following packages (the last three packages were
used in case of certain compatibility problems):

• Tomcat 4.x that is a HTTPD engine with

servlets support (also called servlet container).
• Java XML Pack Specification Interface Classes

02 / update 1, which includes various APIs:
• JAXP for XML processing (validation of

documents);
• JAXM for XML based messaging for Java

applications to send and receive a
document using a pure Java API (it
implements Simple Object Access Protocol
v 1.1 with attachments);

• JAX-RPC for XML-based RPC messaging
that allows Java application to invoke a
Java based WS (this can be seen as Java
RMIs over Web Services);

• JAXR for XML Registries that provides a
uniform and standard Java API for
accessing metadata registries like ebXML
and UDDI;

• JAXB for XML Binding that allows Java
developers to create and edit XML using
familiar Java objects.

• SOAP toolkit (apache.org implementation
version 2.3), which provides a client library to
invoke SOAP services available elsewhere and
server-side tools to implement SOAP
accessible services. It supports HTTP almost
exclusively – other options like SMTP have
limited support.

• Apache Xerces 2.9 namespaces-aware XML
parser for validation of XML documents.

• JAXP 1.3 JAXP, Java API for generation,
parsing and manipulation of XML documents.

The above versions of solutions already belong to
the older implementations (versions), but they are
still solid options for production use. The reason
why they were chosen was that they require
significantly fewer resources than the current, latest
versions. The PC was a typical system with Intel P4
3GHz and 512 MB RAM.

The resources requirements for deployment of the
above implementations - as we found out by our
experiment - were as follows:

• The total permanent (hard disc) storage

requirements were 73.5 MB (web-services
packages); of these 39.8 MB were for Tomcat,
servlets supporting HTTP daemon, 35.6 MB
for Java RE, and 2 KB for the ID class file
together with deployment descriptor file. The
total hard disc usage was approx. 150 MB.

• RAM usage was up to 10.46 MB for Tomcat.
SOAP (rpcrouter) and ID servlet used up to
7.6MB of RAM. These were all Java processes.
They depended on 37 system modules that used
approx. 8 MB of RAM. The total usage of
RAM was over 26 MB.

• Use of CPU resources - execution of our
testing ID web service increased CPU
operations up to 52%. It should be emphasized
that this percentage serves only for rough
orientation, because real CPU load is a matter
of duration of processing (process priority). So,
in principle, if one assumes the same
conditions except that a processor is a few
times slower (lower clock frequency), the
processing would just take a few times as much
time as in this case.

• With regard to network utilization, this turned
out to be the least problematic segment. The
whole outbound and inbound SOAP message
required approx. 2*800 B and was transferred
with an average rate of 1500 bps.

Proceedings of the 11th WSEAS International Conference on SYSTEMS, Agios Nikolaos, Crete Island, Greece, July 23-25, 2007 360

From the above measurements (and taking into
account facts from Table 1), it is evident that full-
blown WS can be currently implemented on
mainframes, desktops, palm tops, and conditionally
in certain mobile phones. But for the rest of devices
(smart-cards and RFIDs) the above analysis implies
that wrapping by back-end systems is required. The
concrete place can, in principle, be even a reader.
Final remark - although it is a matter of a few years
to have an implementation of a web server on a
smart-card, full-blown WS are another bunch of
years away. This is also proved by current
implementation of Java 2ME Wireless Toolkit.

It is interesting to mention one lightweight option,
which is called PocketSOAP [11]. As the name
implies it is intended for palmtops with MS
Windows OS. These binaries (provided as DLLs)
require 0.7 MB and include HTTPD and SOAP.
This implementation eases implementation for
palmtops, and further supports our findings. For
mobile phones, which currently constitute the
border where implementations of WS are feasible,
wireless markup language and other related
specifications from Open Mobile Alliance can
present a significant gain [12].

5. Conclusions
Services oriented architectures that are based on
WS are a promising approach for distributed
computing in business environments. But current
implementations of WS are limited to environments
with sufficient resources in terms of computing
power, available RAM, permanent memory, and
available bandwidth. However, mobile and various
handheld devices, together with RFID systems, are
becoming integral parts of global networks.
Moreover, the number of such devices in global
networks is increasing at a much faster pace than
that of traditional devices. And implementing WS
in such cases is not a straightforward task.

We have presented an analysis of typical properties
of main types of network devices: mainframes,
desktops, laptops, palmtops, mobile phones, smart
cards and RFIDs. We also developed a basic WS
solution, which provided only identification of a
device or service. We made basic measurements
about the use of resources of this application.

On this basis we found that even such basic WS is
too demanding in terms of required assets and
resources for RFIDs, smart cards, and even the
majority of mobile phones. Thus we have proposed

bypass solutions, which are lightweighting of
existing protocols and use of wrappers. As the first
approach is a matter of a long-term standardization
process, we believe that the other architectural
approach, which is wrapped-WS, is already feasible
today. Thus further efforts about deployment of
these weakest devices in WS scenarios should be
concentrated on wrapped-WS approaches.

References:
[1] Nagappan R., Skoczylas R., Sriganesh P.R.,
Developing Java Web Services, John Wiley &
Sons, Indianapolis, 2003.
[2] Chase N., XML Primer Plus, SAMS Publishing,
Indianapolis 2002.
[3] IBM, What is grid computing?, http://www-
1.ibm.com/grid/about_grid/what_is.shtml.
[4] H. Kishimoto H., Treadwell J., Defining the
Grid: A Roadmap for OGSA™ Standards, Open
Grid Services Architecture WG Draft GGF-OGSA-
Roadmap-024, September 2005,
http://forge.gridforum.org/sf/go/doc13521?nav=1.
[5] Enterprise Grid Alliance, Reference Model and
Use Cases, parts 1 and 2, Reference Model WG
standard v 1.5, March 2006.
[6] Maguire T., Snelling D., Banks T., Web
Services Service Group, WS ServiceGroup
Committee Specification wsrf-ws_service_group-
1.2-spec-cs-01 V 1.2, 2006.
[7] Andrews T., Andrews T., Curbera F., Dholakia
H, Goland Y., Klein J., Leymann F., Liu K., Roller
D., Smith D., Thatte S., Trickovic I, Weerawarana
S, Business Process Execution Language for Web
Services version 1.1, 2003,
http://dev2dev.bea.com/technologies/webservices/
BPEL4WS.jsp.
[8] Mitra N. (ed.), SOAP Version 1.2, Primer, W3C
Recom. REC-soap12-part0-20030624, 2003,
http://www.w3.org/TR/2003/REC-soap12-part0-
20030624/.
[9] Christensen E. et al., Web Services Description
Language (WSDL) v 1.1, W3C Rec. NOTE-wsdl-
20010315, 2001, http://www.w3.org/TR/2001/NOTE-
wsdl-20010315.
[10] Clement L. et al. (eds), UDDI Version 3.0.2,
UDDI TC Spec 20041019, http://www.oasis-
open.org/specs/index.php#uddiv3.0.2.
[11] Fell S., PocektSOAP, Program documentation,
http://www.pocketsoap.com/.
[12] Open Mobile Alliance, WAP Forum Releases,
2006, http://www.openmobilealliance.org/tech/affi-
liates/wap/wapindex.html.

Proceedings of the 11th WSEAS International Conference on SYSTEMS, Agios Nikolaos, Crete Island, Greece, July 23-25, 2007 361

http://www.w3.org/TR/2003/REC-soap12-part0-20030624/
http://www.w3.org/TR/2003/REC-soap12-part0-20030624/

	WEB SERVICES DEPLOYMENT METHODOLOGIES
	FOR WEAK PROCESSING DEVICES – AN ANALYSIS
	Keywords: decentralized systems, wireless applications, grids, web services, weak processing devices.
	1. Introduction
	2. Grid and WS Standards Overview
	3. WS Implementation Environments
	4. Available Approaches to WS Implementation

