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Abstract

The calibration of a camera system is modelled as a
parameter estimation problem on a nonlinear state space.
Properly taking into account the manifold structure of the
state space, a calibration algorithm with extremely good
convergence properties is derived.
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1. Introduction

We discuss the problem of calibrating a system made
up of an arbitrary number of cameras each of which is, pos-
sibly after preprocessing, described by a pinhole model. If
a number of landmarks can be identified on images taken
by these cameras, the resulting image coordinates can be
measured. The task is to deduce from these measurements
the locations and spatial orientations of the cameras and
to assess the accuracies of these data in terms of the (as-
sumed) measurement accuracies and also of the accuracies
of the landmark coordinates if these cannot be assumed
as perfectly known.

Figure 1: Camera model.

2. Camera System Model

We consider a pinhole camera with focal width f
whose optical centre is located at a point p and whose
spatial orientation is given by a right-handed orthonor-
mal system (g1, g2, g3) of vectors such that g; and g2 span

the image plane whereas g3 is perpendicular to the im-
age plane, pointing towards the objects of which pictures
are taken. We call the matrix ¢ := (g1 | g2 | ¢g3) whose
columns are the vectors g; the camera attitude; this is
a rotation matrix, i.e., an element of the rotation group
G = SO(3). Clearly, g; = ge; for i = 1,2,3, where
(e1,€2,€3) is the reference coordinate system used. If a
picture of a landmark located at a point = is taken, then
the light ray from x through p intersects the image plane;
i.e., there are real numbers A > 0, u and v such that the
equation z+ A(p —z) = p+ugr +vg2 — fgs holds, i.e., we
have

(1) A-Dp—-2) =

(where v and v are the horizontal and vertical image coor-
dinates). Taking the inner product of (1) with g3 we find
that (A — 1)(p — x, g3) = —f and hence that

-

<P -, g3> .

Taking the inner product of (1) with both g; and g2, plug-
ging in (2) and writing g; = ge; for 1 < i < 3, we obtain
the equations

ug1 +vga — fg3

(2) A-1 =

u = —f'@T’gegi =: U(p,g;2, f),
¥ {p — =, gea)
v = —f- @_ngez = V(p,g;2,[).

3. Sensitivity of Measurements

To see how sensitively the measurement functions U
and V depend on their arguments, we need to calculated
the associated partial derivatives. A straightforward cal-
culation shows that the gradients of U and V with respect
to p are given by

(p—2,93001 — (P —x,01)93

VU = —f- TETE
_ .(P—l’)x(nggs)
(4) = —f PETwAE
_ _(P—m)xgz
REEARrErYE
and
. p—2,95092 — (p—,92)93
VeV = —f 7.3
. .(P—l’)x(nggs)
(5) = —f 7.0
= —f (p—2) x ¢

(p—ag)°
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whereas obviously

(6)

To calculate the partial derivatives of U and V with re-
spect to g, we temporarily ignore the fact that g must
be an element of G SO(3), but treat g simply as
an element of the linear space R3*3 of all real (3 x 3)-
matrices. Endowing this space with the Frobenius in-
ner product (4, B)) := tr(ATB) and using the fact that
(u, Av) = (u @ v, A) for all u,v € R® and all A € R3*3,
we find that

VU= —V,U and V,V=-V,V.

(p—z,93)(p—2)®e1 — (p—2,91)(p—2) D e3
(p—=,g3)?

(p—2,93)(p—2) ®ea — (p—2,92)(p—2) €3
(p—=,g3)?

where the gradients are formed with respect to the inner
product {(-,-)). Letting

(7) y

=—f-

=—f-

g 'p—a),

this can be rewritten as

AU = <pf’fggy(iv—m) ® ((P—m,93>61 - <P—$v91>€3>
- a2 (weer — (ner)es)
N <y,_€3>2 (p—2)® (v x (a1 x e3))
and
AV = ;f(p—a:) ® | (p—x, g3)ea — (p—x, ga)es
g <p—$,gg>2 ’ ’
L= 8 (edes — )
B <y,_€3>2 (p—2)® (yx (2 x e3))
so that
- f
VU = 5(p—2) ® (y X e2),
<y, €3>
® '
vg‘/ = <y’ €3>2 (p - 33) & (y X 61)'
Finally,
ou (p-m01) U
of — (p—wmg) [’
(9) WV o (p-mg) V
of  (p—w,g3) f

We now use the partial derivatives to show which changes
in the measurement functions U and V are caused by
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changes in the system parameters. The only parameter
for which this is not straightforward is the camera atti-
tude g, because now we have to incorporate the constraints
g7g = 1 and det(g) = 1. (In other words, the argument
g of the functions U and V must not be considered as
an element of the linear manifold R3*3, but as an ele-
ment of the nonlinear manifold G = SO(3).) One possible
way of proceeding would be to choose a parametrisation
of G, for example Euler angles, which is smoothly invert-
ible about the actual attitude g, and then to calculate
the partial derivatives with respect to the chosen coordi-
nates. Proceeding this way, however, may lead to numer-
ical difficulties even if the (unavoidable) singularities of
the parametrisation are relatively far away from the ac-
tual attitude g; therefore, we choose a different approach.
Namely, we consider only increments 6g € R3*® which are
tangent to G at g (with the consequence that g + dg is an
element of G = SO(3) up to second-order effects). This
means that we consider only increments of the form

(10) gL(A) (A€eR?)

dg

where, in general, for any given vector w € R® the matrix
L(w) € R**3 is defined by L(w)a = w x a; in coordinates,

we have
0 —Wws3 W
(11) L(w) = ws 0 —w
—W9 w1 0

Now changing g by an increment g = gL(A) yields, in
first-order approximation, changes (6U), = {(V,U,dg)
and (6V), = (V4V,d¢)) in U and V, respectively, which
— according to (8) — are given by

(60)y = —L((p—2)® (v x ¢2), 60)
<y, €3>
- <y’ €3>2 x, (69)(y X 62)>
(12) = e (p—2,9(A X (y x e2)))
- <y"£3>2 <ya A x (y X 62)>
- <y’_€3>2 <y X (y X 62)5 A>
and
(V) = Lssllo —0)® ( x e2). )
- - o, (59)( x 1))
Y, €3>
(13) = <y’_€];>2 (p—a,9(Ax (yx e1)))
= <y’_€3>2 (y, A x (y x e1))
- <y’ €3>2 <y X (y X 61)3 A> .
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4. Estimation Procedure

The practical determination of the camera configu-
ration from the available measurements requires filtering
out the noise with which the measurements are fraught.
This is a standard estimation problem which, in reason-
able generality, can be formulated as follows. (See [2],
pp. 120-133 for more details.) A measurement vector
1 depends on two kinds of parameters U and u which
are distinguished because of the different roles they play
in the subsequent estimation process: U is treated as a
solve-for parameter whereas u is taken as a consider pa-
rameter; i.e., the value of U will be estimated whereas
u is only considered in assessing the accuracy of the esti-
mate obtained for U. (In our case U = (p1, 91, ..., PN, 9gN)
while u = (21, ..., 2,,) where z; is the position of the i-th
landmark. The focal widths f1, ..., fy are assumed to be
perfectly known, but could alternatively also be treated
as consider parameters.) If U* and u* are the true (but
unknown) parameter values then the measurement vector
1t obtained is
(14) B— pU )
where n is the measurement noise (whose covariance ma-
trix is supposed to be known). We assume that we have
initial estimates Ujnis and uinis for the parameters in ques-
tion. While the estimate for u is never changed, we want
to iteratively improve the available estimate for U. Thus
we ask how to optimally update an “old” estimate Ugyq to
obtain a “new” estimate
(15) Unew - old + oU .

To assess the quality of an arbitrary estimate (U, u), we
introduce the residual vector

(16) p(U,u) = fi— p(U,u)

which is a list of the differences between the actually ob-
tained and the theoretically expected measurements. To
properly measure the size of the residual vector, we weight
the different measurements according to their respective
accuracies; i.e., we introduce the scalar quantity

(17)

Q(Uvu) = p(U,u)TWp(U,u)

with the weighting matrix

(18) W = Cov[n] .

Denoting by vW the unique upper triangular matrix
M such that W = MTM (obtained by performing the
Cholesky decomposition of W see [1], pp. 37-43, and [4],
pp. 146-149) we can write

2
|

(19) QU,u) = |VWp(U,u)l

bl
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thus in the case of uncorrelated measurements @ is sim-
ply the sum of the squares of the weighted residuals, where
the weighting factor for any measurement is the recipro-
cal of the standard deviation of this measurement. Now
an update step 6U as in (15) is considered optimal if it
minimises the size of the resulting “new” residual vector

Prew = P(Unew,winit) = p(Uold + 0U, tinit)
(20) ~ p(Usia, tinis) + (Op/0U)(Uglg, tinis)6U
= pold — A(Uold, Uinit) U
where
(21) AU,y — )

ou
denotes the matrix of partial derivatives of the measure-
ments with respect to the solve-for parameters. Thus,

using first-order approximations, we want to choose the
update 06U such that

2 2
(22)  Quew = [ VWpnew | = [| VW pora — VW AU ||

(where A := A(Uqd, tinit)) becomes minimal. It is well
known (see [2], pp. 109-119) that if A has maximal rank
this minimisation problem has the unique solution

(23) U = (ATWA) AT Wpq .

However, the matrix ATW A is often ill-conditioned; thus
for numerical reasons it is not recommended to perform
the matrix inversion in (23) in a straightforward way. In-
stead, we determine an orthogonal matrix P such that

(24) PVWA — R — {Rl}

0

has upper triangular form (where R; is an upper trian-
gular square matrix whose size is given by the number
of solve-for parameters). (Such a matrix P can be deter-
mined by a sequence of Householder transformations; see
[1], pp. 57-67, and [4], pp. 164-168.) We let

(25) € = PVW poa;

since applying an orthogonal matrix does not effect the
norm of a vector, (22) becomes

e 2 |[a]  [RioU
Qnew - ”g R(SU” - H|:§2:| |: 0 :|

= |l&1 — RisU|)® + &)1

2

(26)

it is clear that this last expression is minimised by letting
(27) = R{'€.
Note that (27) yields (23) because

R = (RIR)'Rig = (RTR)'RT¢ =

(28)
(ATVW' PTPVWA) " ATVW ' PTPvVW pod
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which, using PTP = 1, becomes (ATWA)TATW py1q.
Thus we know how the update step (15) should be per-
formed. Since in each step we linearised about the current
estimate, iteration of the procedure is necessary. To mon-
itor convergence, we note from (20) that we can predict
which residual vector can be expected in the next iteration
(to be performed with Upey instead of Ugq), namely

(29) Pexpected — Pold — A(Uolda uinit)(SU .

We consider convergence to be achieved if the difference
between the residual vectors expected for and actually ob-
tained in the next iteration becomes “small”; i.e., if

(30) mi}?v | ( V W(pexpected - Pobtained) )z | < €

1<i<

for some predefined convergence margin € > 0. It remains
to assess the accuracy of the estimate obtained. After
convergence, all remaining residuals are supposed to stem
exclusively from the measurement noise and the uncer-
tainty in the consider parameter estimate wni (Whereas
the final estimate obtained for U is supposed to be the
true value U*). Then, if éu := wjny, — w* is the error in
the estimate for u, the residual vector becomes

p = p—puU"u"+bu)

= p(U",v*) +n—pu(U* v + du)

WU 0%) = U, 0) — (Ops/0u) (U, ")
n — (Ou/0uw)(U*, u*)éu

~ n— (Op/0uw) (U™, uinit)0u .

2

(31)

Making the (natural) assumption that the measurement
noise and the error in the consider parameter estimate are
uncorrelated and writing

op

(32) B = o

(U*a uinit)a
we find from (31) that

Cov[p] = Cov[n]+ Cov[B éul

33
(33) = W+ BCovl|ou|BT

and hence from (23) that

Cov[oU| = (ATWA) ATW Cov|p|WAATWA) !

(34) — (ATWA)™! + DCov[du|DT

where D = (ATWA)"1(ATWB). Note that the first
summand in (34) represents the parameter estimation in-
accuracy due to the noise in the measurements whereas
the second summand represents the parameter estimation
inaccuracy due the consider parameter uncertainty.
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5. Nonlinear Update

When the general estimation procedure explained in
the previous section is applied to the calibration problem
at hand, a peculiarity arises. Namely, the parameter g
(and hence the solve-for parameter U = (p,g)) cannot
be taken as an element of a linear manifold, due to the
constraint g € SO(3). As stated at the end of section 3,
this is dealt with by allowing only updates of the special
form (10). This has the consequence that two typical rows
of the partial derivative matrix (21), associated with the
u-coordinate und the v-coordinate of the same image point
obtained as a measurement, take the forms

@ e S

where

s 'f% = e
VoU = oega VX (y X es),
V’HVV - W?J x (y x eq)

according to (4), (5), (12) and (13); the update vector
then takes the form

(37) ((Spl, (Spg, (Spg, Al, Ag, Ag)T .

Once the update vector is found, we can form dg via (10),
but, of course, we cannot simply write gnew = gold + 09
because the right-hand side of this equation is not an ele-
ment of SO(3). What we do instead is “wrap around” the
vector g and hence apply the update along the geodesic
of SO(3) originating from g4 determined by the tangent
vector dg. This results in the nonlinear update step

(38) Jnew ‘— goldexp(L(A))

where exp : s0(3) — SO(3) is the exponential function
of the Lie group SO(3) which is explicitly given by the
Rodrigues formula

exp(L(A)) = cos(|ANT + %L(A)
(39) 1 cos(|A]})

“laga
1Al

where 1 denotes the (3 x 3) identity matrix. The nonlinear
update step is shown pictorially in the following diagram.
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Figure 2: Nonlinear update of camera attitude.

After convergence, the (6N x 6 N)-covariance matrix of the
parameter vector (6p1, A1, ..., dpn, An) can be computed
using (34). To convert this into the covariance matrix
for the state vector (p1,91,...,2n,9n) We need to know
how the covariance matrix of a random variable A € R?
is transformed into the covariance matrix of the random
variable geXp(L(A)). First we note that if w,v,w € R3
then

(L(w) @ L)) (L(w)) = {(L(w), L©))L(u)

hence if we identify R® with so(3) via w — L(w), then
L(u) ® L(v) is identified with 2w ® v. Consequently,

il Cov|[L(A)] = E[L(A)® L(A)] = E2A® A
(1) = 2FE[A®A] = 2 Cov[A].

By homogeneity of the Lie group SO(3), the accuracy of
an estimate gnew = gold eXp(L(A)) is the given by

(42) Cov[gnew] = Cov[L(A)].

6. Test Results

The algorithm described above was tested for a sce-
nario representing an application in medical image pro-
cessing as described in [3]. Four cameras are mounted at
the corners of a rectangular frame.

Figure 3: Scenario used for test runs.

Calibration is performed by taking pictures of landmarks
arranged in a checkerboard pattern. We assume perfectly
known landmarks and measurement accuracies of 0.01
units of length for both the u- and v-coordinates of all im-
age points, where the unit length is taken as the length of a
square in che checkerboard pattern used. (Test runs based
on more realistic assumptions, using the landmark coor-
dinates as consider parameters rather than known con-
stants, will be included in the final version of the paper.)
Rather large errors (half a unit length in position coordi-
nates and ten degrees in angular coordinates) were intro-
duced to obtain highly corrupted initial estimates for the
camera positions and attitudes.

parameter True values

P (-2.000, -2.000, 2.000)

P (-2.000, 10.000, 2.000)

p3 (10.000, 10.000, 2.000)

P4 (10.000, -2.000, 2.000)
0.162221 0.707107 0.688247

g1 0.162221 -0.707107 0.688247
0.973329 0.000000 -0.229416
0.162221 -0.707107 0.688247

ga -0.162221 -0.707107 -0.688247
0.973329 0.000000 -0.229416
-0.162221 -0.707107 -0.688247

g3 -0.162221 0.707107 -0.688247
0.973329 0.000000 -0.229416
-0.162221 0.707107 -0.688247

g4 0.162221 0.707107 0.688247
0.973329 0.000000 -0.229416

Nevertheless, convergence to the correct solution (within
the unavoidable error margins) was obtained within a few
iterations; the estimation results obtained in the various
iterations were as follows.
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parameter Initial estimates
D1 -1.07558 -2.74439 1.53538
D2 -2.52006 10.21500 2.19312
D3 10.93790 9.83020 1.80551
D4 9.88609 -2.52936 1.87572
0.253780 0.761653 0.596222
g1 0.077723 -0.630466 0.772316
0.964134 -0.149658 -0.219198
0.119402 -0.835456 0.536430
go -0.225317 -0.548999 -0.804880
0.966941 -0.024762 -0.253794
-0.163257 -0.562758 -0.810339
g3 -0.169335 0.825154 -0.538931
0.971943 0.049235 -0.230007
-0.330731 0.487284 -0.808190
ga 0.000936 0.856552 0.516060
0.943725 0.169921 -0.283744
parameter First iteration
D1 -1.98304 -2.22826 2.14633
D2 -1.69773 9.75612 1.87365
D3 9.80777 10.06730 2.00824
D4 9.79324 -1.77262 1.93512
0.176914 0.711824 0.679712
g1 0.158173 -0.702191 0.694196
0.971433 -0.015301 -0.236819
0.154134 -0.711256 0.685826
go -0.152950 -0.702930 -0.694620
0.976140 0.002168 -0.217132
-0.155134 -0.717303 -0.679272
g3 -0.169122 0.696729 -0.697113
0.973309 0.006734 -0.229398
-0.131674 0.696360 -0.705510
ga 0.138390 0.717650 0.682514
0.981585 -0.007766 -0.190866
parameter Second iteration
o -2.00022 -2.01701 1.98244
D2 -1.97097 9.96164 2.02694
D3 9.94319 10.02140 1.96921
D4 9.97512 -1.99221  1.99222
0.163464 0.708437 0.686583
g1 0.158258 -0.705761 0.690547
0.973773 -0.004222 -0.227482
0.162948 -0.706927 0.688260
go -0.167052 -0.707280 -0.686912
0.972390 -0.003044 -0.233343
-0.157811 -0.710670 -0.685597
g3 -0.161018 0.703524 -0.692190
0.974253 0.001158 -0.225454
-0.160756 0.707988 -0.687685
ga 0.163645 0.706222 0.683818
0.973333 -0.001805 -0.229388
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parameter Third iteration
D1 -1.99356 -2.02457 1.98674
D2 -1.99201 9.97217 2.03489
D3 9.94417 10.01890 1.96908
D4 9.99329 -2.01357 1.98964
0.163897 0.708827 0.686077
g1 0.158234 -0.705367 0.690956
0.973704 -0.004685 -0.227768
0.162757 -0.706548 0.688695
ga -0.167179 -0.707657 -0.686493
0.972400 -0.003404 -0.233296
-0.157870 -0.710548 -0.685710
g3 -0.160931 0.703647 -0.692085
0.974258 0.001093 -0.225434
-0.159845 0.708299 -0.687577
g4 0.163278 0.705910 0.689226
0.973545 -0.002097 -0.228486

To monitor convergence, we list, for each iteration, the
errors (i.e., deviations between currently best estimates
and true values) for the camera positions and attitudes
and also the root of the mean square error (RMS) as an
indicator of the overall size of the residual vector. (The
size of the attitude error is measured with respect to the

matrix norm || 4] := 1/tr(AT A)).

initial 1st it. 2nd it. 3rd it.
p1 | 1.274570 |0.271662 |0.024444 |0.028651
p2 [0.594985 |0.408422 |0.055139 |0.045341
p3 |0.972808 |0.203820 [0.068074 |0.066565
ps |0.555555 [0.314103 [0.027206 |0.018347
g1 |0.249989 | 0.026066 |0.007118 |0.007845
g2 |0.291866 |0.019900 |0.007161 |0.007501
g3z |0.272858 | 0.022672 |0.009322 |0.009138
ga |0.449222 | 0.060607 |0.003104 |0.004042
RMS| 379.035 | 57.2963 | 24.3506 | 24.2789

1]

2]

7. References

Gerald J. Bierman, Factorization Methods for Dis-
crete Sequential FEstimation, Academic Press, New

York 1977

Theodore D. Moyer, Mathematical Formulation of
the Double-Precision Orbit Determination Program
(DPOPD), Technical Report 32-1527, Jet Propulsion
Laboratory, Pasadena 1971

D. Richter, F. La Torre, J. Egger, G. StraBmann,
Tetraoptical Camera System for Medical Navigation,
Proc. 17th Biennial International Eurasip Conference
Biosignal 2004

Josef Stoer, Finfihrung in die Numerische Mathe-
matik I, Springer-Verlag, Berlin — Heidelberg — New
York 31979



