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Abstract: Assessment of the actual geomagnetic activity level from local magnetometer monitoring is of impor-
tance in earth sciences and exploration but also for different kinds of risk assessment with regard to electronics and
electric power facilities. Wavelet based signal processing methods are applied to extract meaningful information
from magnetic field time series in a noisy environment. Using a proper feature vector with a locally linear radial
basis function net a local geomagnetic activity index can be derived under not ideal circumstances.
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1 Introduction

Monitoring geomagnetic activity is a task of consid-
erable interest for earth sciences but also for predict-
ing hazards for electronics, communication and mains
power failure. Along with global activity measure-
ments averaged from a number of worldwide dis-
tributed magnetometer sites and satellites, local mea-
surements are necessary for assessing local conditions
- e.g. for the application of geophysical exploration
methods relying on magnetic field measurements [3].
Such recordings usually cannot be done in a noise
free environment and therefore call for signal process-
ing methods. After some remarks with respect to the
magnetic field monitoring process we discuss statisti-
cal and transform based parameters that prove to be
useful for characterising local deviations from a ’giet’
earth magnetic field condition and allow to quantify
geomagnetic activity using a neuro fuzzy classifier.

2 Magnetic Field Monitoring and
Geomagnetic Activity

Basically the local geomagnetic disturbance level
is quantified by the 3 hour range of the horizontal
magnetic field components B, B,- with B, as the
N-S, B, the E-W (and B, the vertical) component.
The range being understood as the difference between
maximum and minimum values within this time span.
The activity level a for a 3h time interval is defined
by a = max(range)/2 (unit: nT, nano-Tesla), with
‘max’ taken over the horizontal field components.

Usually not a, but a nearly logarithmic function of
it, the K-index is used. Globally the K-indices of a
number of geomagnetic observatories are combined
to yield a global (planetary) index Kp with values
from 0 to 9 for the 3h intervals starting at 0, 3, 6, 9,
12, 15, 18, 21 UTC (Universal Time Coordinated). In
a not perfect environment the local 3h-range of mag-
netic field values is detoriated by temperature drift of
the sensor and manmade field disturbances. They can
be dealt with to a certain extent, but not completely
removed. Therefore some additional features gained
from the field time signal are proposed for a more
secure local geomagnetic activity assessment.

The following discussion uses B, (t) time series
gained with a fluxgate magnetometer with a resolution
of 2nT.

Signal processing is based on the magnetic field
value relative to its value at 0 UTC: By ,¢(t) =
By(t) — By(t=0UTC).

2.1 Preprocessing

Despite heat isolation of the fluxgate temperature
varies over the day (fig. 2). A temperature sensor
therefore under the same isolation conditions is placed
near the field sensor. A linear temperature drift correc-
tion is applied according to:

By,rel,cor’r‘ected = By,rel + a * (T - TO) (l)

With Tp: temperature at 0 UT'C' and a: sensor
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Figure 2: Typical temperature variation over the day
relative to 0 UT'C' at the sensor.

As the activity level in the 3h interval basically is
defined via the maximum field value difference within
the time interval, artificial offsets have to be elimi-
nated. A mass of magnetizable material, as for exam-
ple cars, changes the local field at distances of several
tens of meters, i.e. produce a constant offset as long
as they are in place. The offset changes sign, if they
are removed again. These kinds of offsets can be dealt
with in by continuously logging step jumps in the sig-
nal with the appropriate sign (fig. 3).

3 Relevant Data Features

The basic analysis interval is 7' = 3 hours with
n = 1024 = 21 B, -samples (this is a sample rate
of nearly 0.1 Hz). Fig. 4 shows typical examples with
a certain geomagnetic activity level in an undisturbed
and - what is more typical - disturbed signal trace. We
now want to extract features that are able to discrimi-
nate between the natural and noise part.
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Figure 3: Offset compensation. Left: without, right:
with compensation. The horizontal lines in the right
figure indicate how the total offset level develops in
time.
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Figure 4: Geomagnetic activity within 3 hours inter-
vals. Left: mostly undisturbed example right: signal
with superimposed manmade disturbances.

Inspection of the wavelet decomposition
(Daubechies4, [5]) in combination with the Fourier
transform of 3h-intervals shows that the wavelet
energies in the scales 5,6,7, i.e. e(5),e(6),e(7)
are most characteristic for the geomagnetic activity
in this period. The energy e(s) on scale s simply
is the squared sum of the DWT coefficients of that
scale. Using the equivalence s = [b(4 f T) (see
fig. 5) a scale s corresponds to center frequencies
feenter = 1/T 2572 in the range 0.5---5 mHz (i.e.
periods roughly from 3 to 30 minutes). In this fre-
quency band geomagnetic pulsations of class Pc5 and
Pi3 can be found. Geomagnetic field variations are
categorized by their period and structure into classes
Pc1 to Pc5 for continuous structured pulsations and
Pil to Pi3 for irregular structures [4].

As a feature vector for the activity classification
of a 3h interval we therefore choose the 4 components:

By,ma;r - By,minv 6(5)7 €(6>, 6(7)

4 Classification with a Neuro Fuzzy
Data Model

For the derivation of a local K-index quantifying geo-
magnetic activity we use a neuro fuzzy data model. In
neural net terms its a locally linear radial basis func-
tion network we now descibe.

Each training vector consists of p = 4 features
and a classification value y. The matrix of training
vectors is normalised with respect to the mean and
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Figure 5: Example for a " = 3h B, signal (n =
1024 samples, normalized with respect to mean and
standard deviation,top) and its DAUB4 wavelet de-
composition (scales = -10, below).In paral-
lel (right) the DWT scale energies together with the
Fourier decomposition are displayed. The informa-
tion of the Fourier power spectrum log(Re(FFT)? +
Im(FFT)?) around frequency f corresponds to a
wavelet scale energy at scale s = [b(4 f T') in the
ranges f = 1/T---(n/2)/T and s = 1---1b(n).

the standard deviation of each component. With
normalised feature vector &, weights wo; and w;, N

basis function centers f; and width vectors é’j the nor-

malised classification output y(™ for a (normalised)
input ¥ is

T —13)) ¢;(%) ()

N
(n
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with gaussian basis functions

¢](f) =e 5:1((%_%‘1')/6]‘1)2 (3)
and
N
= > ¢;(@) @)
j=1

normalizing the basis functions. In total we have
N (3p + 1) parameters.

Training of a LL-RBFN can be done with gradient
descent algorithms [6] or optimisation procedures that
are simplex (Nelder-Mead [5]) or evolutionary based
or are tree construction oriented like the LOLIMOT
(LOcally LInear MOdel Tree) algorithm [10]. For our

application a line search (numerical gradient descent)
algorithm proved efficient.

As starter parameters for a training process we
select N basis function centers f; from the training
set (input vectors). This can be done totally at random
or better by assuring that each relevant index range
y is represented by a center. We use a k-means
cluster algorithm to this end. An upper limit for
a meaningful number of centers N can be found
by repeated k-means runs on the input vectors and
looking for an about equally distributed number of
input vectors in each cluster.

Width parameters are intitialised according to

dmaz
o= 5)

with the maximum center distance

Amaz = max; ; ‘72 - Ey‘ (6)

The initial weights we get from
()
woj ==Y 95U ©)
i=1

with m training vectors (&, yl(n)), and g* being the
pseudoinverse matrix of g;; = ¢;(Z;)/s(Z;).

The linear coefficient weights w; are initialized to 0.
So the LL-RBFN is initialized as a usual RBFN.

Weights, centers and width parameters are op-
timised (trained) using a numerical gradient descent
(line search) algorithm with respect to the mean
squared classification error. A training data set with
200 vectors was modelled by the trained net with a
rms error of 0.2 with respect to an K-index ranging
from O to 6. The rms error with respect to 100 test
vectors was about 0.5. A difficulty with getting train-
ing and test data for a site is that bigger K-values occur
exponentially less frequent.

The local linear RBFN approach allows to reduce
effectively the number NV of basis functions, i.e. hid-
den neurons, because of the additional free linear pa-
rameters. This is an important point with regard to
execution speed, but especially with regard to inter-
pretability. N typically is of the order of integer K-
values, i.e. N = 7 for K = 0---6 (the RBFN output
being continuous however).

4.1 Fuzzy Rule Interpretation of the LL-
RBFN

One of the reasons for choosing a LL-RBFN was,
that it has a structure allowing a straightforward



Proceedings of the 11th WSEAS International Conference on SYSTEMS, Agios Nikolaos, Crete Island, Greece, July 23-25, 2007 157

Takagi-Sugeno fuzzy rule interpretation [7], [8] It
is therefore sometimes called Locally Linear Neuro
Fuzzy Model (LLNFM). Within the Takagi-Sugeno
framework a rule has fuzzy input and crisp output and
can be formulated as:

IF Z is in the domain of basis function ;j THEN
Y™ = wo; + ;- (T~ 1)

So, the LL-RBFN output (equ. 2) can equiva-
lently be looked at as the output of a system with N
rules, each having fuzzy premises and crisp conse-
quences. In this context wo; + W, - (& — ;) is the
weight of rule j and ¢;(Z)/s(Z) the relevance of rule
j for an input Z.

Because of the identity

o~ 2oy (@itji)/eji)? _ 7_, e~ (@imti)/ea)®  (g)

for a p-dimensional input the premise part of rule j
can be read as

IF Z is in the domain of basis function j =
IF x1 is in dj1 AND .. AND x,, is in d;y,

where d;; = S e~ ((@i=ti1)/cii)? ig the gaussian
membership function for input component ¢ centered

at t;; with width parameter cj;.

Fuzzy rule based interpretation of a LL-RBFN
with a low number of basis functions allows for some
more direct insight into the classification process than
a pure RBFN (usually needing more basis functions
for the same fit accuracy) or backpropagation net-
works. In this way domain analysis of the basis func-
tions using the trained centers, widths and weights re-
veals correlations between feature combinations and
signal characteristics and allows for rule extraction
under certain prerequisites discussed in [9].

5 Conclusion

Signal processing and computational intelligence
methods are discussed that proved successful in
deriving a local geomagnetic activity index from
magnetic field time series in a noisy environment. To
this end a feature vector with mainly wavelet based
components is used with a locally linear radial basis
function net (LL-RBFN). Knowledge discovery by
exploiting the interpretation of the LL-RBFN within
a Takagi-Sugeno fuzzy rule framework is subject of

ongoing research.
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