
Optimization of memory system in Real-Time Embedded Systems 
 

A R MAHAJAN 
Department of Computer Science 

Nagpur University, 
Nagpur, 
INDIA 

 
 

M S ALI 
Department of Computer Science 

Amravati University, 
Amravati 
INDIA 

 
 

 
 
Abstract : - Code space is a critical issue in designing of software for real-time embedded systems. The memory 
system often determines a great deal about the behavior of an embedded system: performance, power, and 
manufacturing cost. A great many software techniques have been developed to optimize software to improve these 
characteristics. Since much of the code for embedded systems is compiled once and then burned into ROM, the 
software designer will often tolerate much longer compile times in the hope of reducing the size of the compiled 
code. This paper surveys techniques for optimizing memory behavior of real-time embedded software . 
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1   Introduction  
Embedded Real Time systems have to correctly 
implement the required functionality , as well as , 
they have to fulfill a wide  range of constraints : 
development cost, unit cost, reliability, security, size, 
performance, power consumption etc. Critical to the 
correct functioning of such systems are their  timing 
constraint[31]. 

A real time system is one that fails if it’s 
performance criteria are not met. Real time systems 
have been classified as hard and soft. There is a third 
category , firm real time systems, whose definition 
falls between those of hard and soft real time system.  

A hard real-time system is one that must 
meet its performance objectives every time and all 
the time. As soon as one of  these systems does not 
meet one of its performance criteria, it fails. An 
example of a hard real-time system is a fly-by-wire 
flight control system, where if the system does not 
respond to a pilot’s commands within microseconds, 
then the system fails with potentially catastrophic 
circumstances. 

A soft real-time system is one that must meet 
its performance objectives on average only. This 
means that if every now and then a performance 
deadline is missed, the system does not fail. If, 
however, the system repeatedly misses its 
performance deadlines, then it fails. An example of a 
soft real-time system is a streaming media player, 
where if the system does not meet its performance 

objectives in a single instance, then the buffered 
information ensures that there is no loss of 
information. Should this loss continue over time, 
however, the quality of the connection becomes 
reduced and may eventually be lost[32,30]. 
 
 
2. Distributed Real-Time Embedded 
Systems 
Currently, distributed real-time systems are 
implemented using architectures where each node is 
dedicated to the implementation of a single function 
or class of functions. The complete system can be, in 
general, composed of several networks 
interconnected with each other (see Figure 1). Each 
network has its own communication protocol, and 
internetwork communication is via a gateway, which 
is a node connected to both networks. The 
architecture can contain several such networks 
having different types of topologies.  

A network is composed of several different 
types of hardware components, called nodes. 
Typically, every node, also called an electronic 
control unit (ECU), has a communication controller, 
CPU, RAM, ROM, and an I/O interface to sensors 
and actuators. Nodes can also have ASICs in order to 
accelerate parts of their functionality. The 
microcontrollers used in a node and the type of 
network protocol employed are influenced by the 
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nature of the functionality and the imposed real time, 
fault-tolerance, and power constraints[1]. 

For processor-based embedded systems, 
however, the use of compilers is less common. 
Instead, designers still use assembly language to 
program many embedded applications. This is 
because of the high-efficiency requirements of the 
embedded systems. Processor-based embedded 
systems frequently employ domain-specific or 
application-specific instruction set processors 
(ASIPs), which meet design constraints such as 
performance, cost, and power consumption more 
efficiently than general-purpose processors. Building 
the required software development tool infrastructure 
for ASIPs, however, is expensive and time-
consuming. 

The processor architecture and the embedded 
software executed on the processor must be efficient. 
The cause of many compilers’ poor code quality is 
the highly specialized architecture of ASIPs, whose 
instruction sets are incompatible with high-level 
languages and traditional compiler technology. To 
combat poor code quality, compiler designers need 
domain-specific code optimization techniques that go 
beyond classical compiler technology, which mainly 
supports machine-independent optimization and code 
generation for clean architectures (those with 
homogeneous register files) such as reduced-
instruction-set computers (RISCs). Unlike compilers 
for desktop computers, compilers for ASIPs need not 
be very fast. Most Embedded software developers 
agree that a slow compiler is acceptable, provided 
that it generates efficient code. A compiler can 
exploit an increased amount of compilation time by 
using more-effective (and more time-consuming) 
optimization techniques like genetic algorithms, 
simulated annealing, integer linear programming, and 
branch-and-bound search. 

The multiple phases of compilers must 
execute in some order, and each phase can impose 
unnecessary restrictions on subsequent phases. 

 
 

2.1 Speed and size  
In fact, the speed versus size tradeoff  is a critical 
part of the application build process. Much of the 
work by an embedded systems programmer is taken 
up tuning compiler optimization switches for the best 
mix of performance and compact code size. Using a 
performance profiler and knowledge of the 
application, the programmer chooses the time critical 

parts to optimize for speed, and chooses the rest to 
optimize for size. If we believe the 90-10 rule, that 
90% of the time is spent in 10% of the code, then 
optimizing that 10% of the code for speed and the 
rest for size should give the best of both worlds. This 
doesn't reflect reality, however. There are other 
reasons to perhaps favor a slightly slower, smaller 
program, or to favor a slightly larger, faster program. 

In Real-Time Embedded Systems both speed 
and size are significant. Typically a compiler places 
primary emphasis on the execution speed of the 
compiled code and much less emphasis on the size of 
the compiled code. Optimization for execution speed 
, in some cases, conflict with optimization  for code 
size [16]. 
 
 
2.2 Real-Time requirements 
One of the key issues in real-time systems is the 
schedulability analysis to determine whether the 
timing constraints will be satisfied at run-time or not. 
Regardless of which analysis and scheduling 
techniques are used, it is essential that the real-time 
designer be able to determine the worst-case 
execution time of all the activities involved in the 
application. Moreover, real-time applications run for 
large periods of time. During its operation, memory 
can be allocated and deallocated many times which 
aggravates the memory fragmentation problem. 
Considering these aspects, the requirements of real-
time applications regarding dynamic memory can be 
stated as follows:  
- Bounded response time. The WCRT has to be 
known a priority and, if possible, be independent of 
application data. This is the main requirement the 
must be meet.  
- Fast response time. Although having a bounded 
response time is a must, the response time has to be 
fast to be usable. A bounded DSA algorithm which is 
10 times slower than a conventional one, is not 
practical. 
- Memory requests have to be always satisfied. In 
non-real time systems applications can receive a null 
pointer or are just killed by the OS when the system 
runs out of memory. It is obvious that is not possible 
to always grant all the memory requested.  
Although there is large range of real-time systems 
with different memory constraints and  hardware 
support, the study presented in this work in progress 
is focused on embedded systems where memory is a 
scarce resource and there is no MMU support. 
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In distributed environment , efforts are made to shift 
the computation to the disk subsystem eg. Active 
disks[26,3], intelligent disks[4], smart disks[14], by 
performing some filtering type of computation on the 
storage device itself.  [15] demonstrates how several 
database operations can be performed by the 
embedded processor attached to the storage 
device.The memory hierarchy has served as a central 
component in computing platforms since the 
introduction of Von Neumann Machine. It uses 
several levels of cache memories, with each level 
trading off capacity for the access speed, to bridge 
the widening performance gap between processor 
and main memory, while processing speeds have 
nearly doubled every year, memory response times 
have increased by a much slower rate a year. 
   
3  Embedded Software and Memory 
In embedded systems , the cost of the memory 
hierarchy limits it’s ability to play as central a role . 
This is due to stringent area, power and cost 
constraints that fundamentally impact design choices, 
and limit the physical size and complexity of the 
memory system. Ultimately, application developers 
and system engineers are charged with the burden of 
reducing the memory requirements of an application 
in order to avoid memory bottleneck that degrade 
processor throughput. 

In Real-Time Embedded Systems it can be 
challenging to fit the needed functionality into the 
available code space. Economic consideration often 
dictate the use of a small and cheap processor, while 
demands of functionality lead to a need for 
considerable code space. Most compilers ignore the 
problems of limited code space in Embedded 
systems. Designers of Embedded systems often have 
no better alternative than to manually reduce the size 
of the source code or even the compiled code. 

A foundation for the automatic optimization 
of memory requirements using novel compiler 
techniques that are designed to increase the synergy 
between the processor and its memory system is 
presented in [21]. This thesis offers the possibility of 
compiler optimization playing a significant role in 
optimizing the memory design of an ES.  
As per [18] , compiler methods are preferable to 
programmer directives for three reasons : they do not 
require programmer effort, are portable across 
different systems and are likely to make better 
decisions, especially for large , complex programs. 

The methods that aim to allocate data to on-
chip and off-chip memories mapped to different 
portions of the address space, are discussed in [19] 
and [20]. In [17], a complier algorithm for managing 
scratch-pad based system is presented. The algorithm 
is able to change the allocation at run time and avoid 
the overhead of caching. The runtime using this 
algorithm improves as compared to static allocation. 
Thus, there is a decrease in energy consumption. As 
energy consumption is known to be roughly 
proportional to runtime when the architecture is 
unchanged. 

Usually, embedding a computer in a larger 
system imposes nonfunctional requirements on the 
software and hardware, such as hard performance 
goals (deadlines), power consumption, or code size. 
It is these  constraints that are of primary interest 
when we shape the memory access patterns of 
embedded software. In many cases, the memory 
system is the primary limitation on the performance 
and power consumption of the embedded software. 
And, of course, these goals may be mutually 
incompatible a performance optimization may 
increase power consumption. 

Memory systems often dominate the power 
consumption of embedded systems. The memory 
system power consumption is of particular 
importance in battery-powered embedded systems. 
[9] showed that off-chip memory access dominates 
the power consumption of signal processing–oriented 
embedded systems. In some cases,  even excessive 
cache behavior can cause significant excess power 
consumption. 

Most embedded systems today use a single 
level of cache ( as shown in Fig.1 [33]), but we can 
expect to see multiple levels of caching as 
performance needs go up. The main memory system 
may be contained partially on-chip and partially off-
chip. Scratch pad memories (SPMs) have been 
proposed as one form of high-speed on-chip memory. 
Off-chip, a variety of technologies may be used, 
including synchronous dynamic random access 
memory (SDRAM) or Rambus DRAM (RDRAM). 
The caches, on-chip main memory, and off-chip main 
memory can all influence the performance and power 
consumption of embedded systems. Optimizing 
software to minimize off-chip references is 
particularly important for power consumption. 
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Fig 1 . A memory- centric view of an embedded 
computing system 
 
Code size is often determined by static properties.We 
have several advantages when optimizing the 
software for an embedded system. First, we know the 
characteristics of the underlying hardware platform 
and are willing to optimize to that platform. We can 
even tune the software for such detailed 
characteristics as the size and organization of the 
cache. Second, we generally have a more complete 
set of the software that we can jointly optimize. 
Because real-time deadlines require global analysis, 
we have to have all the software that can affect those 
deadlines in order to be sure that the deadlines are 
met. As a result, we can optimize the entire software 
package rather than independently optimizing the 
pieces. Third, we are generally willing to spend more 
CPU time on compilation and optimization. Using 
more CPU time allows us to apply much stronger 
algorithms to tackle optimization challenges. 

Memory optimizations for embedded 
software comes from two main sources: scientific 
compilers and hardware/software codesign. The 
scientific compilation literature has a long, rich 
history of software optimizations that help relieve 
memory bottlenecks . Scientific compilers are 
especially adept at optimizing the data behavior of 
programs, since array manipulation is at the core of 
many scientific codes. The main limitation of these 
algorithms when applied to embedded software is 
that they use very simple cost models for 
performance and they do not consider power 
consumption at all.  Joint design of hardware and 
software is important to achieving the best designs; 
however, experience shows that when faced with a 
choice between changing the hardware and changing 
the software, software optimizations are often easier 
to do, and are easier to undo if unforeseen side 
effects occur. 

 
 
3.1  Data oriented Optimization 
  Two major tasks in the design of data-oriented 
memory operations are scheduling and allocation. 
Loop transformations change the schedule of 
memory operations by changing the order in which 
memory accesses to array elements occur. Data 
layout transformations change the allocation of data 
by modifying where array elements lie in the cache 
and in main memory partitions. 

Loop transformations are an important tool 
in data cache Optimization. [13] discussed loop 
interchange as a means of optimizing parallelism. 
Techniques for determining the complex loop bounds 
after loop-oriented program transformations have 
been proposed by [12]. [11] were the first ones who 
used transformations such as tiling for improving 
spatial and temporal reuse (mainly for improving the 
paging performance in a virtual memory-based 
environment). [7] and [22] introduced systematic 
ways of using transformations such as loop 
permutations, skewing, and tiling for optimizing 
cache locality. Later, [23] extended unimodular 
transformations to nonunimodular transformations 
and demonstrated how complex transformations can 
be represented within an optimizing compiler. [28], 
[29], and [24] showed how to use data 
transformations for locality and integrated them with 
loop-oriented techniques.  

Compiler optimizations that target improving 
data locality can be divided into two broad groups as 
discussed in [33] :  optimizations that target reducing 
memory latency; and  optimizations that target hiding 
memory latency. 
 
 
3.1.1 Latency-Reducing Transformations 
 In the first group are the techniques that modify 
program access pattern, memory layout of variables, 
or both. Many embedded applications from image 
and video processing domain focus on loop nests and 
arrays of signals. 

A majority of the proposed techniques target 
loop-nest-based embedded codes and try to improve 
locality using loop (iteration space) and/or data 
layout  (memory space) transformations. Loop 
transformations modify the traversal order of loop 
iteration points of a given code to obtain a better data 
locality behavior than the one exhibited by the 
original code. Among the most popular loop 
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transformations are loop permutation and loop fusion 
[19]. Loop permutation changes the order of the 
loops in a given nest. 
For example, consider the following Jacobi iteration 
code from an image processing application: 
for (J= 1;J N-1;J++) 
for (I=1;I N-1;I++) 
B[I][J] = (A[I-1][J]+A[I+1][J]+A[I][J- 
1]+A[I][J+1]) * (1/k); 
Note that, for a fixed value of the loop, the 
successive iterations of the inner loop in this code 
access elements from different rows, and this occurs 
for each reference in the loop body. Since 
multidimensional arrays are stored in C in the row-
major format, this is not a desirable access pattern as 
far as locality is concerned. An optimizing compiler 
can transform this code to obtain the following nest: 
for (I=1;I N-1;I++) 
for (J=1;J N-1;J++) 
B[I][J] =(A[I-1][J]+A[I+1][J]+A[I][J- 
1]+A[I][J+1]) *(1/k); 
Now, for each reference, the successive iterations of 
the inner loop access elements from the same row 
(although different references can access different 
rows). Therefore, we can expect a much better data 
locality behavior from this transformed code. Loop 
permutation belongs to a set of unified class of 
transformations called unimodular transformations. 
Unimodular transformations include loop 
permutation, loop reversal, and loop skewing, and 
target a single nest at a time. Loop fusion is, on the 
other hand, a multinest optimization. 
As an example, consider the following code 
fragment: 
for (I=0;I N;I++) 
k = k + A[I] * B[I]; 
for (I=0;I N;I++) 
c = c * (A[I]+B[I]); 
Given a small-capacity cache, this fragment can read 
each element of arrays and into cache twice, once for 
each loop. We can reduce the number of cache loads 
by half by fusing these two loops as follows: 
for (I=0;I N;I++) 
{ 
k = k + A[I] * B[I]; 
c = c * (A[I]+B[I]); 
} 
Advantage of loop transformation is that each nest in 
the program can be optimized independently from the 
others. Loop transformations, however, are restricted 
by data dependences. In some cases, the best possible 

transformation from a data locality perspective 
cannot be applied because it violates an intrinsic data 
dependence in the code. Also, when a loop 
transformation is applied, typically the locality 
behavior of all references in the code are affected. 
Therefore, it may not be very trivial to find a loop 
transformation that optimizes all (or, at least, most) 
of the references in loop body. 

Alternative optimization is data space 
(memory layout) transformations, or data 
transformations for short [28]. In applying a data 
transformation, instead of the loop access pattern, we 
modify the underlying memory layouts of the arrays 
involved. Implementing a data transformation 
involves transforming  the array subscript 
expressions and modifying the corresponding array 
declaration. Consider, for example, the following 
code fragment: 
for (I=1;I N-1;I++) 
for (J=1;J M-1;J++) 
B[J][I] = B[J+1][I-1] +1; 
Assuming row-major memory layouts as in C, 
interchanging the order of the two loops shown in 
this code is not legal (owing to data dependences). 
However, a data transformation can transform the 
layout of the array in the code from row-major (the 
default layout) to column-major. This can be done by 
modifying the subscript expressions as follows: 
for (I=1;I N-1;I++) 
for (J=1;J M-1;J++) 
B’[I][J] = B’[I-1][J+1] +1; 
Note that the order of the loops is not modified.  
 
3.1.2 Latency-Hiding Transformations 
 The techniques discussed try to improve data 
locality, thereby reducing the number of accesses to 
slower levels in the memory hierarchy. Software 
prefetching, in contrast, tries to bring data to the fast 
memory ahead of time (i.e., before the data is 
actually needed). If this can be chieved, the data can 
be accessed from cache memory when it is needed. 
To issue the prefetches enough iterations ahead of 
their use, a compiler transformation known as 
software pipelining need to be used. [8] presents a 
compiler-directed software prefetching algorithm 
which consists of the following major steps. 

- Determine for each array reference the 
accesses that are likely to be cache misses and 
therefore need to be prefetched. 

-  Isolate the predicted cache miss instances 
through loop splitting [6]. 

Proceedings of the 11th WSEAS International Conference on COMPUTERS, Agios Nikolaos, Crete Island, Greece, July 26-28, 2007         17



-  Apply software pipelining and insert 
prefetch instructions in the code. 
The experimental results using a set of array-
intensive applications show that, in most cases, their 
selective prefetching scheme performs noticeably 
better than indiscriminate prefetching (that is, issuing 
a prefetch request for each array reference). These 
performance benefits (over the indiscriminate 
prefetching) comes primarily from a reduction in 
prefetching overhead while still maintaining a 
comparable savings in memory stall time. Their 
results also indicate that compiler-directed software 
prefetching is, in many cases, complementary to 
classical latency reducing locality optimizations such 
as iteration space tiling.  [5] developed a theory for 
software-assisted cache replacement. They developed 
theorems that describe when kill and keep 
instructions can be inserted into programs such that 
the modified code will have at least as high a hit rate 
as before. They also developed a compiler algorithm 
based on this theory. 
 
 
4 Conclusion 
Efficient analysis and optimization methods are 
needed and can be developed for the implementation 
of distributed real-time applications. Real-time 
embedded system optimization has to tightly 
integrate software and hardware schemes . Use of  
more effective optimization techniques  for 
embedded systems compilers will increase the 
efficiency of these applications and will solve the 
memory reference problem in embedded systems . 
Loop optimizations with memory layout 
transformations will be very important as embedded 
applications become more complex and more data 
intensive. 
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