
Optimization of memory system in Real-Time Embedded Systems

A R MAHAJAN
Department of Computer Science

Nagpur University,
Nagpur,
INDIA

M S ALI
Department of Computer Science

Amravati University,
Amravati
INDIA

Abstract : - Code space is a critical issue in designing of software for real-time embedded systems. The memory
system often determines a great deal about the behavior of an embedded system: performance, power, and
manufacturing cost. A great many software techniques have been developed to optimize software to improve these
characteristics. Since much of the code for embedded systems is compiled once and then burned into ROM, the
software designer will often tolerate much longer compile times in the hope of reducing the size of the compiled
code. This paper surveys techniques for optimizing memory behavior of real-time embedded software .

Key-words : - embedded systems, real-time, memory, compiler , optimization , cache

1 Introduction
Embedded Real Time systems have to correctly
implement the required functionality , as well as ,
they have to fulfill a wide range of constraints :
development cost, unit cost, reliability, security, size,
performance, power consumption etc. Critical to the
correct functioning of such systems are their timing
constraint[31].

A real time system is one that fails if it’s
performance criteria are not met. Real time systems
have been classified as hard and soft. There is a third
category , firm real time systems, whose definition
falls between those of hard and soft real time system.

A hard real-time system is one that must
meet its performance objectives every time and all
the time. As soon as one of these systems does not
meet one of its performance criteria, it fails. An
example of a hard real-time system is a fly-by-wire
flight control system, where if the system does not
respond to a pilot’s commands within microseconds,
then the system fails with potentially catastrophic
circumstances.

A soft real-time system is one that must meet
its performance objectives on average only. This
means that if every now and then a performance
deadline is missed, the system does not fail. If,
however, the system repeatedly misses its
performance deadlines, then it fails. An example of a
soft real-time system is a streaming media player,
where if the system does not meet its performance

objectives in a single instance, then the buffered
information ensures that there is no loss of
information. Should this loss continue over time,
however, the quality of the connection becomes
reduced and may eventually be lost[32,30].

2. Distributed Real-Time Embedded
Systems
Currently, distributed real-time systems are
implemented using architectures where each node is
dedicated to the implementation of a single function
or class of functions. The complete system can be, in
general, composed of several networks
interconnected with each other (see Figure 1). Each
network has its own communication protocol, and
internetwork communication is via a gateway, which
is a node connected to both networks. The
architecture can contain several such networks
having different types of topologies.

A network is composed of several different
types of hardware components, called nodes.
Typically, every node, also called an electronic
control unit (ECU), has a communication controller,
CPU, RAM, ROM, and an I/O interface to sensors
and actuators. Nodes can also have ASICs in order to
accelerate parts of their functionality. The
microcontrollers used in a node and the type of
network protocol employed are influenced by the

Proceedings of the 11th WSEAS International Conference on COMPUTERS, Agios Nikolaos, Crete Island, Greece, July 26-28, 2007 13

nature of the functionality and the imposed real time,
fault-tolerance, and power constraints[1].

For processor-based embedded systems,
however, the use of compilers is less common.
Instead, designers still use assembly language to
program many embedded applications. This is
because of the high-efficiency requirements of the
embedded systems. Processor-based embedded
systems frequently employ domain-specific or
application-specific instruction set processors
(ASIPs), which meet design constraints such as
performance, cost, and power consumption more
efficiently than general-purpose processors. Building
the required software development tool infrastructure
for ASIPs, however, is expensive and time-
consuming.

The processor architecture and the embedded
software executed on the processor must be efficient.
The cause of many compilers’ poor code quality is
the highly specialized architecture of ASIPs, whose
instruction sets are incompatible with high-level
languages and traditional compiler technology. To
combat poor code quality, compiler designers need
domain-specific code optimization techniques that go
beyond classical compiler technology, which mainly
supports machine-independent optimization and code
generation for clean architectures (those with
homogeneous register files) such as reduced-
instruction-set computers (RISCs). Unlike compilers
for desktop computers, compilers for ASIPs need not
be very fast. Most Embedded software developers
agree that a slow compiler is acceptable, provided
that it generates efficient code. A compiler can
exploit an increased amount of compilation time by
using more-effective (and more time-consuming)
optimization techniques like genetic algorithms,
simulated annealing, integer linear programming, and
branch-and-bound search.

The multiple phases of compilers must
execute in some order, and each phase can impose
unnecessary restrictions on subsequent phases.

2.1 Speed and size
In fact, the speed versus size tradeoff is a critical
part of the application build process. Much of the
work by an embedded systems programmer is taken
up tuning compiler optimization switches for the best
mix of performance and compact code size. Using a
performance profiler and knowledge of the
application, the programmer chooses the time critical

parts to optimize for speed, and chooses the rest to
optimize for size. If we believe the 90-10 rule, that
90% of the time is spent in 10% of the code, then
optimizing that 10% of the code for speed and the
rest for size should give the best of both worlds. This
doesn't reflect reality, however. There are other
reasons to perhaps favor a slightly slower, smaller
program, or to favor a slightly larger, faster program.

In Real-Time Embedded Systems both speed
and size are significant. Typically a compiler places
primary emphasis on the execution speed of the
compiled code and much less emphasis on the size of
the compiled code. Optimization for execution speed
, in some cases, conflict with optimization for code
size [16].

2.2 Real-Time requirements
One of the key issues in real-time systems is the
schedulability analysis to determine whether the
timing constraints will be satisfied at run-time or not.
Regardless of which analysis and scheduling
techniques are used, it is essential that the real-time
designer be able to determine the worst-case
execution time of all the activities involved in the
application. Moreover, real-time applications run for
large periods of time. During its operation, memory
can be allocated and deallocated many times which
aggravates the memory fragmentation problem.
Considering these aspects, the requirements of real-
time applications regarding dynamic memory can be
stated as follows:
- Bounded response time. The WCRT has to be
known a priority and, if possible, be independent of
application data. This is the main requirement the
must be meet.
- Fast response time. Although having a bounded
response time is a must, the response time has to be
fast to be usable. A bounded DSA algorithm which is
10 times slower than a conventional one, is not
practical.
- Memory requests have to be always satisfied. In
non-real time systems applications can receive a null
pointer or are just killed by the OS when the system
runs out of memory. It is obvious that is not possible
to always grant all the memory requested.
Although there is large range of real-time systems
with different memory constraints and hardware
support, the study presented in this work in progress
is focused on embedded systems where memory is a
scarce resource and there is no MMU support.

Proceedings of the 11th WSEAS International Conference on COMPUTERS, Agios Nikolaos, Crete Island, Greece, July 26-28, 2007 14

In distributed environment , efforts are made to shift
the computation to the disk subsystem eg. Active
disks[26,3], intelligent disks[4], smart disks[14], by
performing some filtering type of computation on the
storage device itself. [15] demonstrates how several
database operations can be performed by the
embedded processor attached to the storage
device.The memory hierarchy has served as a central
component in computing platforms since the
introduction of Von Neumann Machine. It uses
several levels of cache memories, with each level
trading off capacity for the access speed, to bridge
the widening performance gap between processor
and main memory, while processing speeds have
nearly doubled every year, memory response times
have increased by a much slower rate a year.

3 Embedded Software and Memory
In embedded systems , the cost of the memory
hierarchy limits it’s ability to play as central a role .
This is due to stringent area, power and cost
constraints that fundamentally impact design choices,
and limit the physical size and complexity of the
memory system. Ultimately, application developers
and system engineers are charged with the burden of
reducing the memory requirements of an application
in order to avoid memory bottleneck that degrade
processor throughput.

In Real-Time Embedded Systems it can be
challenging to fit the needed functionality into the
available code space. Economic consideration often
dictate the use of a small and cheap processor, while
demands of functionality lead to a need for
considerable code space. Most compilers ignore the
problems of limited code space in Embedded
systems. Designers of Embedded systems often have
no better alternative than to manually reduce the size
of the source code or even the compiled code.

A foundation for the automatic optimization
of memory requirements using novel compiler
techniques that are designed to increase the synergy
between the processor and its memory system is
presented in [21]. This thesis offers the possibility of
compiler optimization playing a significant role in
optimizing the memory design of an ES.
As per [18] , compiler methods are preferable to
programmer directives for three reasons : they do not
require programmer effort, are portable across
different systems and are likely to make better
decisions, especially for large , complex programs.

The methods that aim to allocate data to on-
chip and off-chip memories mapped to different
portions of the address space, are discussed in [19]
and [20]. In [17], a complier algorithm for managing
scratch-pad based system is presented. The algorithm
is able to change the allocation at run time and avoid
the overhead of caching. The runtime using this
algorithm improves as compared to static allocation.
Thus, there is a decrease in energy consumption. As
energy consumption is known to be roughly
proportional to runtime when the architecture is
unchanged.

Usually, embedding a computer in a larger
system imposes nonfunctional requirements on the
software and hardware, such as hard performance
goals (deadlines), power consumption, or code size.
It is these constraints that are of primary interest
when we shape the memory access patterns of
embedded software. In many cases, the memory
system is the primary limitation on the performance
and power consumption of the embedded software.
And, of course, these goals may be mutually
incompatible a performance optimization may
increase power consumption.

Memory systems often dominate the power
consumption of embedded systems. The memory
system power consumption is of particular
importance in battery-powered embedded systems.
[9] showed that off-chip memory access dominates
the power consumption of signal processing–oriented
embedded systems. In some cases, even excessive
cache behavior can cause significant excess power
consumption.

Most embedded systems today use a single
level of cache (as shown in Fig.1 [33]), but we can
expect to see multiple levels of caching as
performance needs go up. The main memory system
may be contained partially on-chip and partially off-
chip. Scratch pad memories (SPMs) have been
proposed as one form of high-speed on-chip memory.
Off-chip, a variety of technologies may be used,
including synchronous dynamic random access
memory (SDRAM) or Rambus DRAM (RDRAM).
The caches, on-chip main memory, and off-chip main
memory can all influence the performance and power
consumption of embedded systems. Optimizing
software to minimize off-chip references is
particularly important for power consumption.

Proceedings of the 11th WSEAS International Conference on COMPUTERS, Agios Nikolaos, Crete Island, Greece, July 26-28, 2007 15

Fig 1 . A memory- centric view of an embedded
computing system

Code size is often determined by static properties.We
have several advantages when optimizing the
software for an embedded system. First, we know the
characteristics of the underlying hardware platform
and are willing to optimize to that platform. We can
even tune the software for such detailed
characteristics as the size and organization of the
cache. Second, we generally have a more complete
set of the software that we can jointly optimize.
Because real-time deadlines require global analysis,
we have to have all the software that can affect those
deadlines in order to be sure that the deadlines are
met. As a result, we can optimize the entire software
package rather than independently optimizing the
pieces. Third, we are generally willing to spend more
CPU time on compilation and optimization. Using
more CPU time allows us to apply much stronger
algorithms to tackle optimization challenges.

Memory optimizations for embedded
software comes from two main sources: scientific
compilers and hardware/software codesign. The
scientific compilation literature has a long, rich
history of software optimizations that help relieve
memory bottlenecks . Scientific compilers are
especially adept at optimizing the data behavior of
programs, since array manipulation is at the core of
many scientific codes. The main limitation of these
algorithms when applied to embedded software is
that they use very simple cost models for
performance and they do not consider power
consumption at all. Joint design of hardware and
software is important to achieving the best designs;
however, experience shows that when faced with a
choice between changing the hardware and changing
the software, software optimizations are often easier
to do, and are easier to undo if unforeseen side
effects occur.

3.1 Data oriented Optimization
 Two major tasks in the design of data-oriented
memory operations are scheduling and allocation.
Loop transformations change the schedule of
memory operations by changing the order in which
memory accesses to array elements occur. Data
layout transformations change the allocation of data
by modifying where array elements lie in the cache
and in main memory partitions.

Loop transformations are an important tool
in data cache Optimization. [13] discussed loop
interchange as a means of optimizing parallelism.
Techniques for determining the complex loop bounds
after loop-oriented program transformations have
been proposed by [12]. [11] were the first ones who
used transformations such as tiling for improving
spatial and temporal reuse (mainly for improving the
paging performance in a virtual memory-based
environment). [7] and [22] introduced systematic
ways of using transformations such as loop
permutations, skewing, and tiling for optimizing
cache locality. Later, [23] extended unimodular
transformations to nonunimodular transformations
and demonstrated how complex transformations can
be represented within an optimizing compiler. [28],
[29], and [24] showed how to use data
transformations for locality and integrated them with
loop-oriented techniques.

Compiler optimizations that target improving
data locality can be divided into two broad groups as
discussed in [33] : optimizations that target reducing
memory latency; and optimizations that target hiding
memory latency.

3.1.1 Latency-Reducing Transformations
 In the first group are the techniques that modify
program access pattern, memory layout of variables,
or both. Many embedded applications from image
and video processing domain focus on loop nests and
arrays of signals.

A majority of the proposed techniques target
loop-nest-based embedded codes and try to improve
locality using loop (iteration space) and/or data
layout (memory space) transformations. Loop
transformations modify the traversal order of loop
iteration points of a given code to obtain a better data
locality behavior than the one exhibited by the
original code. Among the most popular loop

 CPU

Scratch pad
memory (SPM)

Off-chip
memory

Chip

 C
ac

he

Proceedings of the 11th WSEAS International Conference on COMPUTERS, Agios Nikolaos, Crete Island, Greece, July 26-28, 2007 16

transformations are loop permutation and loop fusion
[19]. Loop permutation changes the order of the
loops in a given nest.
For example, consider the following Jacobi iteration
code from an image processing application:
for (J= 1;J N-1;J++)
for (I=1;I N-1;I++)
B[I][J] = (A[I-1][J]+A[I+1][J]+A[I][J-
1]+A[I][J+1]) * (1/k);
Note that, for a fixed value of the loop, the
successive iterations of the inner loop in this code
access elements from different rows, and this occurs
for each reference in the loop body. Since
multidimensional arrays are stored in C in the row-
major format, this is not a desirable access pattern as
far as locality is concerned. An optimizing compiler
can transform this code to obtain the following nest:
for (I=1;I N-1;I++)
for (J=1;J N-1;J++)
B[I][J] =(A[I-1][J]+A[I+1][J]+A[I][J-
1]+A[I][J+1]) *(1/k);
Now, for each reference, the successive iterations of
the inner loop access elements from the same row
(although different references can access different
rows). Therefore, we can expect a much better data
locality behavior from this transformed code. Loop
permutation belongs to a set of unified class of
transformations called unimodular transformations.
Unimodular transformations include loop
permutation, loop reversal, and loop skewing, and
target a single nest at a time. Loop fusion is, on the
other hand, a multinest optimization.
As an example, consider the following code
fragment:
for (I=0;I N;I++)
k = k + A[I] * B[I];
for (I=0;I N;I++)
c = c * (A[I]+B[I]);
Given a small-capacity cache, this fragment can read
each element of arrays and into cache twice, once for
each loop. We can reduce the number of cache loads
by half by fusing these two loops as follows:
for (I=0;I N;I++)
{
k = k + A[I] * B[I];
c = c * (A[I]+B[I]);
}
Advantage of loop transformation is that each nest in
the program can be optimized independently from the
others. Loop transformations, however, are restricted
by data dependences. In some cases, the best possible

transformation from a data locality perspective
cannot be applied because it violates an intrinsic data
dependence in the code. Also, when a loop
transformation is applied, typically the locality
behavior of all references in the code are affected.
Therefore, it may not be very trivial to find a loop
transformation that optimizes all (or, at least, most)
of the references in loop body.

Alternative optimization is data space
(memory layout) transformations, or data
transformations for short [28]. In applying a data
transformation, instead of the loop access pattern, we
modify the underlying memory layouts of the arrays
involved. Implementing a data transformation
involves transforming the array subscript
expressions and modifying the corresponding array
declaration. Consider, for example, the following
code fragment:
for (I=1;I N-1;I++)
for (J=1;J M-1;J++)
B[J][I] = B[J+1][I-1] +1;
Assuming row-major memory layouts as in C,
interchanging the order of the two loops shown in
this code is not legal (owing to data dependences).
However, a data transformation can transform the
layout of the array in the code from row-major (the
default layout) to column-major. This can be done by
modifying the subscript expressions as follows:
for (I=1;I N-1;I++)
for (J=1;J M-1;J++)
B’[I][J] = B’[I-1][J+1] +1;
Note that the order of the loops is not modified.

3.1.2 Latency-Hiding Transformations
 The techniques discussed try to improve data
locality, thereby reducing the number of accesses to
slower levels in the memory hierarchy. Software
prefetching, in contrast, tries to bring data to the fast
memory ahead of time (i.e., before the data is
actually needed). If this can be chieved, the data can
be accessed from cache memory when it is needed.
To issue the prefetches enough iterations ahead of
their use, a compiler transformation known as
software pipelining need to be used. [8] presents a
compiler-directed software prefetching algorithm
which consists of the following major steps.

- Determine for each array reference the
accesses that are likely to be cache misses and
therefore need to be prefetched.

- Isolate the predicted cache miss instances
through loop splitting [6].

Proceedings of the 11th WSEAS International Conference on COMPUTERS, Agios Nikolaos, Crete Island, Greece, July 26-28, 2007 17

- Apply software pipelining and insert
prefetch instructions in the code.
The experimental results using a set of array-
intensive applications show that, in most cases, their
selective prefetching scheme performs noticeably
better than indiscriminate prefetching (that is, issuing
a prefetch request for each array reference). These
performance benefits (over the indiscriminate
prefetching) comes primarily from a reduction in
prefetching overhead while still maintaining a
comparable savings in memory stall time. Their
results also indicate that compiler-directed software
prefetching is, in many cases, complementary to
classical latency reducing locality optimizations such
as iteration space tiling. [5] developed a theory for
software-assisted cache replacement. They developed
theorems that describe when kill and keep
instructions can be inserted into programs such that
the modified code will have at least as high a hit rate
as before. They also developed a compiler algorithm
based on this theory.

4 Conclusion
Efficient analysis and optimization methods are
needed and can be developed for the implementation
of distributed real-time applications. Real-time
embedded system optimization has to tightly
integrate software and hardware schemes . Use of
more effective optimization techniques for
embedded systems compilers will increase the
efficiency of these applications and will solve the
memory reference problem in embedded systems .
Loop optimizations with memory layout
transformations will be very important as embedded
applications become more complex and more data
intensive.

References:
[1] Paul Pop, Petru Eles, Zebo Peng, and Traian Pop
, “Analysis and Optimization of Distributed
Real-Time Embedded Systems” , ACM Transactions
on Design Automation of Electronic Systems,
Vol. 11, No. 3, July 2006, Pages 593–625.
[2] C.Kozyrakis, D.Judd, J. Gebis, S. Williams, D.
Patterson, and K.Yelick, “Hardware/Compiler
Codevelopment for an Embedded Media Processor”
[3] A. Acharya, M. Uysal and J. Saltz, ”Active
Disks: Programming Model, Algorithms and

Evaluation”. In Proc. the 8th International
Conference on Architectural Support for
Programming Languages and Operating Systems,
October 1998.
[4] K. Keeton, D. Patterson and J. Hellerstein, ”A
Case for Intelligent Disks (IDISKs)”. In
SIGMOD Record, 27(3), 1998.
[5] P. Jain, S. Devadas, D. Engels, and L. Rudolph,
“Software-assisted cache replacement
mechanisms for embedded systems,” in Proc.
Int.Conf. Comput. Aided Design (ICCAD-01),
2001, pp. 119–126.
[6] M. Wolfe, High Performance Compilers for
Parallel Computing, CA: Addison Wesley,
1996.
[7] M. Wolf and M. Lam, “A data locality
optimizing algorithm,” in Proc. ACMConf. Program.
 Lang. Design Implementation, 1991, pp.30–44.
[8] T. C. Mowry, M. S. Lam, and A. Gupta,
“Design and evaluation of a compiler algorithm for
 prefetching,” in Proc. Int. Conf. Architectural
Support Program. Lang. Operating Syst.
(ASPLUS V), 1992, pp. 62–73.
[9] F. Catthoor, S. Wuytack, E. De Greef , F. Balasa
, L. Nachtergaele , and A. Vandecapelle, Custom
Memory Management Methodology: Exploration of
Memory Organization for Embedded Multimedia
System Design. Boston, MA: Kluwer, 1998.
[10] M. Kandemir and I. Kadayif, “Compiler-
directed selection of dynamicmemory layouts,” in
 Proc. 9th Int. Symp. Hardware/Software
Codesign, vol. 45, 2001, pp. 219–224.
[11] W. Abu-Sufah, D. J. Kuck, and H. L. Duncan,
“On the performance enhancement of paging
systems through program analysis and
transformations,” IEEE Trans. Compute., vol. C-30,
pp. 341–356, May 1981.
[12] C. Ancourt and F. Irigoin, “Scanning polyhedra
with DO loops,” in Proc. ACM Symp. Principles
Practice Parallel Program., 1991, pp. 39–50.
[13] U. Banerjee, “A theory of loop permutations,”
presented at the Workshop Lang. Compilers
Parallel Computer, Urbana, IL, 1989.
[14] G. Memik, M. Kandemir and A. Choudhary,
”Design and Evaluation of Smart Disk
Architecture for DSS Commercial Workloads”. In
Proc. International Conference on Parallel
Processing, September 2000.
[15] E. Riedel, C. Faloutsos, G. Gibson and D.
Nagle, ”Active Disks for Large-Scale Data
Processing”. IEEE Computer, June 2001, pp. 68–74.

Proceedings of the 11th WSEAS International Conference on COMPUTERS, Agios Nikolaos, Crete Island, Greece, July 26-28, 2007 18

[16] Mayur Naik , Jens Palsberg “Compiling with
Code-Size Constraints “ACM Transactions on
Embedded Computing Systems, Vol. 3, No. 1,
February 2004, Pp 163–181.
[17] S. Udaykumaran and R Barua, “Compiler
decided Dynamic Memory Allocation for Scratch-
Pad Based Embedded Systems”, CASES’03, San
Jose, California, USA, pp. 276-286.
[18] O. Avissar, R. Barua and D Steart , “
Heterogeneous Memory Management for Embedded
Systems ”, CASES’01, 2001, Atlanta, Georgia, USA,
pp. 34-43
[19] P.R.Panda, N.D.Dutt, and A. Nicolau, “On-Chip
vs Off-Chip Memory : The Data Partitioning
Problem in Embedded-Processor based systems”,
ACM Transaction on Design Automation of
Electronic Systems,5(3), July 2000
[20] J. Sjodin, B. Froderberg, and T. Lindgern,
“Allocation of Global Data Objects in On-Chip
RAM”, Compiler and Architecture Support for
Embedded Compution Systems, December 1998.
[21] R. Rabbah , “Design Space Exploration of
Embedded Memory Systems”, Ph. D Thesis,
Gorgia Institute of Technology, August 2006.
[22] F. Irigoin and R. Triolet, “Supernode
partitioning,” in Proc. ACM Symp. Principles
Practice Program. Lang., 1988, pp. 319–329.
[23] W. Li and K. Pingali, “A singular loop
transformation framework based on nonsingular
matrices,” Int. J. Parallel Program., vol. 22, no. 2,
pp. 183–205, Apr. 1991.
[24] M. Kandemir, J. Ramanujam, and A.
Choudhary, “A compiler algorithm for optimizing
 locality in loop nests,” presented at the ACM Int.
Conf. Supercomput., Vienna, Austria, 1997.
[25] M. Masmano, I Ripoll and A. Crespo, “Dynamic
storage allocation for Real-Time Embedded
systems”, Spain, 2001
[26]. M. Uysal, A. Acharya and J. Saltz, ”Evaluation
of Active Disks for Decision Support
Databases”. In Proc. International Conference on
High Performance Computing Architecture, January
2000.
[27] M. Wolfe , “How compilers and tools differ for
embedded systems”, STMicroelectronics, Inc.,
2005.
[28] S.-T. Leung and J. Zahorjan, “Optimizing data
locality by array restructuring,”Univ.
Washington, Comput. Sci. Dept., Seattle, WA, 1995.
[29] M. O’Boyle and P. Knijnenburg, “Nonsingular
data transformations: definition, validity, and

application,” presented at the Int. Conf.
Supercomput., Vienna, Austria, 1997.
[30] Lerie Kane , “Creating High Performance
Embedded Applications Through Compiler
Optimizations “, Technology@Intel Magazine ,
march 2005.
[31] Kevin Tucker , “Compiler Optimization And Its
Impact On Development Of Real-Time Systems” ,
DOC-I, Inc., Phoenix, AZ
[32] Rainer Leupers, “Compiler Design Issues for
Embedded Processors” Aachen University of
Technology,July–August 2002
[33] Wayne Wolf, and Mahmut Kandemir , “Memory
System Optimization of Embedded Software “ ,
Proceedings Of The Ieee, Vol. 91, No. 1, January
2003 pp 165-182

Proceedings of the 11th WSEAS International Conference on COMPUTERS, Agios Nikolaos, Crete Island, Greece, July 26-28, 2007 19

