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Abstract: - The aim of the present work is to bring together new tools and developments in physics and 
computer science with new aspects in applied entomology. Our work elaborates on well known studies on 
applied entomology in population insect dynamics. A spatial evolution equation for olive fly population is 
proposed in order to describe more accurately outbreaks of insect populations by incorporating random 
movement or dispersion of the population. It turns out that dispersion causes both acceleration of population 
growth and shift of the high stable population equilibrium to even higher values thus producing population 
outbreak. Simulation results are also presented confirming theoretically predicted behavior of outbreaks in 
earlier times. 
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1. Introduction 
 Interactions between the mathematical and 
biological sciences have been increasing rapidly in 
recent years [1, 2]. Many problems arising in 
ecology may be described, in a first formulation, 
using differential equations with or without 
dispersion terms or noise induced terms (stochastic 
differential equations) which in their general form 

are known as the population dynamic equations [3, 
4, 5, 6]. One can find numerous examples from 
ecology, which aim at understanding the relations 
between organisms themselves and their 
environment. According to the phenomenological 
theory of population ecology, a population of forest 
insects may be regarded as a bistable system 
characterized by various population densities and 
the possibility of transition from one state (low 
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density) to another (bursting) [7]. This sort of 
ecological dynamics is called nowadays outbreak 
dynamics. 
 Nonlinear ecological dynamical systems have 
been studied extensively in terms of reaction-
diffusion equations and the patterns they generate. 
These kinds of equations have occupied an 
important place in the literature of theoretical 
ecology. The present work elaborates on reaction-
diffusion equations by studying the role of the 
diffusion terms which arise as a random motion in 
space (this belongs to a general class of well studied 
stochastic processes), both in the corresponding rate 
of growth and the transition of bursting state to even 
higher values. 
 An application of the proposed model is 
presented for the olive fruit fly (dacus). The duration 
of the life cycle of dacus is almost one year. During 
this time period 3 to 4 generations may arise. The 
population growth is strongly affected by climate 
conditions (while there is a temperature zone inside 
of which growth of dacus is possible, there is an 
almost linear relation between growth rate and 
temperature) and the presence of olive fruits since 
dacus recline their eggs only in olive fruits [8]. 
While earlier simulation attempts address the 
aforementioned factors in detail (e.g. [9]), in this 
work it is emphasized that building a robust model 
for the evolution of dacus population, dispersion of 
dacus is a crucial parameter. Indeed, experiments in 
real fields and with no new season fruit crop show 
that adult dacus may travel a mean distance over of 
400m during a week [10]. 
 The paper is organized as follows: In Section 2, a 
well known mathematic model for population 
growth (the case of spruce budworm [11]) is 
revisited and explored in order to correctly describe 
the dynamics of dacus population growth. In Section 
3 the model is completed by the introduction of the 
diffusion term. Analysis of the dynamic properties 
of the resulting model as well as new insights in 
robust prediction of population outbreaks is also 
presented. Finally in Section 4 simulation results for 
the evolution of dacus population are presented 
while in Section 5 the main results of the paper are 
summarized. 
 
 
2. Insect outbreak systems: 

Application to olive fruit fly 
 Qualitative and quantitative analysis follows 
similar lines as in [11]. It is noted that the model in 
[11] describes a similar ecosystem, the evolution of 
budworm population. Although certain differences 

are present (e.g. the time over which an outbreak 
takes place is of the order of years for budworm 
population), the main features of the evolution 
equation presented there are still valid for the 
evolution population of dacus. Indeed, a logistic 
equation which incorporates a predation term, is 
adopted, 
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where,  is the dacus population, N R  is the growth 
rate and  is the carrying capacity of the ecosystem 
in terms of dacus. The predation term is given as, 
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Thus, there is almost no predation when budworms 
are scarce and so the birds seek food elsewhere. 
However, once the population exceeds a certain 
critical level =N A  the predation turns on sharply 
and then saturates (the birds are eating as fast as 
they can). The final evolution equation has the 
following form, 

)(1
22

2

Nf
NA

NB
K
NRN

dt
dN

=
+

−⎟
⎠
⎞

⎜
⎝
⎛ −=  (3) 

 
The linear stability analysis consists of finding the 
fixed points of Equation (3) e.g. the roots for the 
equation, 

0)N(f =  (4) 
 
One root or fixed point is,  which is always 
unstable since, 
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means that for 0N =  the predation is very small so 
the budworm population grows exponentially. The 
other fixed points are given by the solution of the 
equation, 
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While for the evolution of budworm population the 
analysis for the case of constant rate R  and varying 
capacity  has physical meaning (Fig. 1), for the 
evolution of dacus population the opposite is true 
(Fig. 2). 

K
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Figure 1 The red curve depicts the predation 
term. The blue line depicts the logistic term for 
fixed growth rate and small values of carrying 
capacity. The purple line depicts the logistic term 
for fixed growth rate and large values of carrying 
capacity. 
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Figure 2 The red curve depicts the predation 
term. The blue line depicts the logistic term for 
fixed dimensionless carrying capacity and large 
values of the dimensionless growth rate. The 
purple line depicts the logistic term for fixed 
dimensionless carrying capacity and small values 
of the dimensionless growth rate. 

 
 As the parameter R  is increased, points 0 and 1 
coalescence into a saddle node (Fig. 2) and by a 
slight increase of R  this node is vanished, so the 
population level jumps onto the stable equilibrium 
point 3 (outbreak level). Note that as we increase the 
value of R  the purple line rotates around the fixed 
value of K  clockwise towards the blue line.  
 It is the aim of the present work to study the 
effect of random motion in space (or dispersion) of 
dacus population. From the theory of stochastic 
processes, it is well known that this results into a 
diffusion term in the corresponding evolution 
equation (Eq. 3). In the next section, a detailed 
analysis of the role of the diffusion term in the 
evolution of dacus population is presented. 

3. The Proposed Model with 
Dispersion 

 The role of olive fruit fly (dacus) dispersion in 
the behavior of the population it is not new. Indeed, 
experimental data in real field have shown that 
dacus may travel an average distance of 400 m per 
week in order to find new season fruit crop, despite 
the prevailing hot dry conditions [10]. However, no 
analytical model has been introduced where a 
dispersion term is taken into account explicitly. In 
the following, a reaction-diffusion model is 
proposed in order to incorporate dispersion behavior 
of dacus flies, e.g., 
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where D  is the corresponding diffusion coefficient 
which in general may be a function of 
environmental conditions. In this preliminary study 
we treat diffusion coefficient as a constant. 
 In order to predict the spatial pattern of dacus 
population we study the steady-state solutions of the 
above evolution equation. The steady state version 
of Eq. (6) is 
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This last equation belongs to a general class of 
equations, which has been studied in detail in [12]. 
Three types of stationary spatial solutions are 
possible: reversals, localized and periodic solutions 
as depicted in Fig. 3. Noting that observations in real 
fields show a more or less random emergence of 
population nucleus, in the present work we are 
mainly interested in localized solutions which 
gradually fill up the entire space. 
 

 
 

Figure 3 Reversals, localized and periodic 
solutions of Eq. (7). 
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Indeed, localized solutions exist for all  that are 
in the range where the  plot exhibits a 
negative slope. When integrating Eq. (6) twice 
gives, 
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0x  arbitrary constant and  is the first equilibrium 

point of Eq. (6). Then,  are determined by, 
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For  reversing Eq. (8) a stationary 
solution  can be estimated. For appropriate set 
of parameters a class of solutions of the type, 
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emerges, where the constants  are functions of 
the model parameters  and 

c,b,a
ABKR ,,, D . 

 In order to study the effect of the diffusion term 
in the initial evolution equation we may enter the 
solution of Eq. (11) into the differential Eq. (6). For 
this scenario we redraw Fig. (2). 
 

0 10 20 30 40 50
x0.0

0.2

0.4

0.6

0.8
r

 
Figure 4 Equilibrium points of Eq. (7) with and 
without the diffusion term. Only one equilibrium 
point changes drastically under the presence of a 
diffusion term. 

 
 In Fig. 4 the green line depicts the correction 
because of the presence of the diffusion term. It is 
evident that while the position of the first two (one 
stable and one unstable) points are not strongly 

affected, the crucial position for outbreak of the 
second equilibrium is relocated to higher values of 
dacus population. That is, dacus population may 
increase to values that would not have been able to 
be predicted by previous model, so in our case an 
outbreak takes place. In order to check the relative 
value of growth rate with and without diffusion the 
second part of the corresponding evolution equation 
is depicted in Fig. 5. It is noted that while for the 
range under consideration and for low values of 
dacus population growth rate without diffusion is 
slightly smaller, the situation changes drastically to 
higher values where the growth rate with diffusion is 
grater and with the appropriate sign. 
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Figure 5 Growth rate of Eq. (7) with and without 
the diffusion term. 

 
4. Simulation results 
 In order to validate the proposed model a 
simulated environment for studying the growth and 
dispersion of dacus population was built. It is noted 
that in order to distinguish the effect of diffusion 
term in growth rate increase and shift of the second 
equilibrium point, the predation term was not taken 
into account. Thus, it is expected that only increase 
of the growth rate of dacus population will be 
realised. We consider a continuous and 
homogeneous field with initial insect population 
coverage of 5% of the whole available area. 
 The simulated environment iterates in discrete 
time steps over the total available area and tracks the 
evolution of dacus population, according to the 
following rules: 
• New insects can be born in neighborhoods 
already populated by previous generations of 
insects, and in particular, in an adequate number to 
enable new generations. 
• While food availability is assumed to be 
homogeneous into the simulated environment, its 
presence is taken into account for the rate of 
simultaneous insect births. Under this consideration, 
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a limiting probability factor of 1/1000 is used to 
control the rate of simultaneous population growth 
in each iteration step. 
 Simulation results of insect population evolution 
over time in a continuous field of a million possible 
locations are depicted in Fig. (6): 
 

 
Figure 6 Simulation results of insect population 
evolution over time for Eq. (7) without the 
predation term. 

 
 The combined results of two simulation setups 
are shown in Fig. (6): 
• In the first case (black line on Fig. (6)), the 
population of dacus is considered stationary, that is, 
it retains its original birth position on the field 
throughout the simulated period. As it can be seen 
from the above graph, the inability of insects to 
move to new locations limits the birth rate and 
results into a prolonged time period (over 50k 
simulated time steps), until the total insect 
population reaches final saturation in the field. 
• In the second case (gray line on Fig. (6)), during 
simulation steps insects have a limited ability to 
migrate to neighboring locations of the field. This 
effect, although does not allow for dramatic 
population migrations during time but enables a 
sharper distribution of dacus populations over the 
field locations. This augmented distribution enables 
the creation of greater number of “reproductive” 
neighborhoods, resulting in a steep curve of total 
population growth. According to simulation results, 
a little over 10k time steps are required for the total 
insect population to reach saturation limit. 
 
 
5. Conclusions 
 Even though the existence and modeling of 
population dispersion for insect dynamics has been 
noticed and formulated in the past by means of 
reaction diffusion equations, no clear picture about 
the effect of this mechanism to the evolution of 
population in time and space has been given. In this 

work, an integrated theoretical framework is 
provided where the effect of population dispersion 
enters in the corresponding evolution equation in the 
form of a second order diffusion term. In this 
framework it is possible to extract analytical 
solutions for the equilibrium population in space, 
giving thus the possibility to monitor and predict the 
emergence of critical nucleus of insect population in 
space which may trigger outbreaks. 
 More over, in the context of the proposed 
methodology the effect of the population dispersion 
has been clarified in detail: It turns out that the 
introduction of the diffusion term into the 
corresponding evolution equation both accelerates 
the overall increasing rate and moves the second 
stable population point of the bistable dynamic to 
higher values thus resulting to outbreaks. As a 
result, the introduction of the diffusion term 
(modeling dispersion of insect population) may be 
crucial for monitoring and early detection of 
population outbreaks where earlier models would 
not be able to predict those. 
 The above theoretical outcomes were confirmed 
with simulation results. For the simulation code, 
model parameters were chosen appropriately for the 
evolution of dacus population. It is noted that in this 
work the simulation code was build in a first 
approximation and it does not take into account 
many parameters emerging in real fields. It will be 
shown in a forthcoming paper that when a more 
precise interpretation is adapted the effect of 
population dispersion is even stronger. 
 Finally, it is noted that the extension of the 
proposed methodology to two dimensions is 
possible. Moreover, random fluctuations of model 
parameters can also be incorporated. It is expected 
that for this scenario stochastic differential equation 
for the evolution of population will result. The role 
of the emerging randomness to early detection of 
population outbreaks will be addressed in a future 
paper as well. 
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