
Interaction Signatures and Action Templates in the ODP
Computational Viewpoint

OUSSAMA REDA, BOUABID EL OUAHIDI
Mohammed-V University, Faculty of Sciences

Dept of Computer Sciences
Ibn Battouta P.O Box 10 14, Rabat

MOROCCO

DANIEL BOURGET
ENST Bretagne

Dept of Computer Sciences
Technopôle Iroise - CS 83818, 29238 Brest

FRANCE

Abstract:-In this work we raise two issues that we came across when aiming to formalize both interaction signa-
tures and action templates within the ODP computational viewpoint. We discuss these two concepts and present
a way to formalize them by introducing a new term to formal descriptions of interaction signatures. In the same
spirit as other works, our aim is to address issues concerning how concepts of the ODP computational viewpoint
are currently defined as we present some solutions to their formalisation. If required, our work aim to serve as
a step to help improve or change the current process of formalizing the ODP computational viewpoint concepts
using the UML language.

Key–Words:ODP, Computational Viewpoint, UML, OCL, Meta-modelling, Interaction Signature, Action Tem-
plate

1 Introduction

The ODP standardization initiative has led to a frame-
work by which distributed systems can be modeled
using five viewpoints. For each viewpoint, the Refer-
ence Model [1], [2], [3] for ODP provides a viewpoint
language that defines concepts and structuring rules
for specifying ODP systems from the corresponding
viewpoint. These viewpoints include a computational
viewpoint, which is concerned with the description of
the system as a set of objects that interact at inter-
faces - enabling system distribution. A computational
specification describes the functional decomposition
of an ODP system, in distribution transparent terms
and is constrained by the rules of the computational
language. These comprise amongst others interaction
rules.

Recent work within the computational viewpoint
such as [4], [5], [6] has mainly addressed the spec-
ification of the functional decomposition of an ODP
system using UML. Other work [7] has focused on
how to consistently formalize concepts of the ODP
computational viewpoint and clarify some ambigui-
ties found while aiming to express them formally. The
authors discussed the issue concerning whetherAction
Templatesbelong to the syntactic level or the seman-
tic one. Then, they proposed to introduce the term
Interaction Signatureat the syntactic level, and to re-
serveAction Templatesto a semantic level while they
interaction signature as syntactic. They also raised a

second issue which has to do with the way in which
the concept of Causality is used and have proposed
some solutions.

From this perspective, we raise the issue of ex-
pressingOperation Signaturesin terms ofAction Tem-
plates and show how to get round the problem of
whether Operation Signaturesare kinds ofAction
Templatesor are constituents ofAction Templates. As
we shall see, we propose to solve the problem by for-
malizing the concept of bothInvocationsand their as-
sociatedTerminationsby introducing them as roles
played inAction Templates. On the other hand, we ad-
dress another issue concerning how to describe both
Operation Signaturesand Signal Signatureson one
side andFlow Signatureson the other side in terms
of Action Templates. In fact, Flow Signaturesdiffer
significantly in their characteristics from bothOpera-
tion andSignal Signatures. That is, aFlow Signatures
has an information type characteristic which is not the
case forOperationandSignal Signatures. Conversely,
both Operationand Signal Signatureshave parame-
ters and their numbers as two characteristics which
are not significant inFlow Signatures. We propose
to solve this issue by introducing a new term referred
to asParametrizedActionTemplate as we shall see
later.

The RM-ODP is not prescriptive about the use
of any particular formal description and specification
techniques for the specification of ODP systems. Re-

Proceedings of the 6th WSEAS Int. Conf. on Software Engineering, Parallel and Distributed Systems, Corfu Island, Greece, February 16-19, 2007 127

cently there has been a considerable amount of re-
search [8] [9], [10] within the field of applying the
UML Language [11], [12] as a formal notation with
the ODP viewpoints, and particularly to the ODP
computational viewpoint [4], [5], [6].

In this respect, we use the UML language to dis-
cuss and present our proposals. Our contribution is
based on ideas from the field of defining notations for
ODP viewpoints.

The remainder of the paper is organized as fol-
lows. In Section 2, we present concepts ofInteraction
Signaturesprovided by RM-ODP. We discuss in sec-
tion 3 how to expressOperation Signaturesin terms
of Action Templates. In section 4 we show how to in-
tegrate theFlow Signaturesconcept to theOperation
Signaturesmodel. A conclusion and perspectives end
the paper.

2 Interaction Signatures concepts

In this section, we present theInteraction Signatures
concepts as they are defined in the computational
viewpoint. These definitions will serve us to discuss
the ideas of the rest of the paper. the definitions are
given as follows:

A computational interface template is an interface
template for either a signal interface, a stream inter-
face or an operation interface. Each interface has a
signature:

• A signal interface signature comprises a finite set
of action templates, one for each signal type in
the interface. Each action template comprises the
name for the signal, the number, names and types
of its parameters and an indication of causality
(initiating or responding, but not both) with re-
spect to the object which instantiates the tem-
plate.

• An operation interface signature comprises a set
of announcement and interrogation signatures as
appropriate, one for each operation type in the
interface, together with an indication of causality
(client or server, but not both) for the interface as
a whole, with respect to the object which instanti-
ates the template. Each announcement signature
is an action template containing both the name of
the invocation and the number, names and types
of its parameters. Each interrogation signature
comprises an action template with the following
elements : the name of the invocation; the num-
ber, names and types of its parameters, a finite,
non-empty set of action templates, one for each
possible termination type of the invocation, each

containing both the name of the termination and
the number, names and types of its parameters.

• A stream interface comprises a finite set of action
templates, one for each flow type in the stream
interface. Each action template for a flow con-
tains the name of the flow, the information type
of the flow, and an indication of causality for the
flow (i.e., producer or consumer but not both)
with respect to the object which instantiates the
template.

3 Operation Signatures and Action
Templates

When trying to formalize these concepts we have met
with an issue concerningAction Templatesand how
they are currently used and defined currently. In other
work such as [7] discussions have focused on whether
an Action Template concept lays on a syntactic level
or a semantic one. Here, we do not confront this is-
sue as we attempt to solve the problem on a syntac-
tic level. We think that the difficulty of formalizing
Action Templatesstems from the fact that sometimes,
Interaction Signaturesseem to be kind ofAction Tem-
plates, while other times they comprise a set ofAction
Templates. In fact,Announcement Signaturesare kind
of Action Templates. In contrast,Interrogation Signa-
turesconsist of two kinds of interactions which are In-
vocations and their associatedTerminations. Thus, it
is not evident whetherOperation Signaturesare kind
of Action Templatesor compriseAction Templatesand
it is difficult to merge these two faces ofOperation
Signaturesin order to formalize them in one blow.

Furthermore,InvocationsandTerminationsseem
to be kinds of Action Templates. However, the defi-
nition of Interrogation Signaturesabove is a little bit
ambiguous. Indeed,Interrogation Signaturesare de-
fined as comprising Actions Templates (the Invoca-
tions) which themselves (the Invocations) comprise a
finite non empty set ofAction Templates(the termina-
tions). This definition is a bit confusing when trying
to formalizeInterrogation Signatures(Invocations and
Terminations). To eliminate this ambiguity, we can
see this definition from another perspective. In fact,
we can look atInterrogation Signaturesas ones com-
prising both Invocations and their correspondingTer-
minationswhich are now linked with an association.

Proceedings of the 6th WSEAS Int. Conf. on Software Engineering, Parallel and Distributed Systems, Corfu Island, Greece, February 16-19, 2007 128

InterrogationSignature

SignalInterfaceSignature

Parameter

name: String
type: String

OperationInterfaceSignature

AnnouncementSignature

InterfaceSignature

causality: String

ActionTemplate

parameternumbers: Integer

name: Integer
causality: Integer

Parameter

name: String
type: String

invocation

0..*

0..*

2..*

0..* 0..*

termination

1

0..*

Figure 1: Operation Signatures in terms of Action
Templates

So, our proposals to solve this issue is to intro-
duce roles (invocation role, termination role) toAc-
tion Templates(see figure 1). Having said that,An-
nouncement Signaturesare now kind ofAction Tem-
plates, while Interrogation SignaturescompriseAc-
tion Templates, and that roles introduced toAction
Templatesare there for distinguish between Invoca-
tions and their associatedTerminations.

Finally, to complete our proposal, we must add
a constraint which asserts that whenever an Action
Template plays the role of an Invocation the set of its
correspondingTerminationsis not empty. we leave
this to later in the work.

4 Flow Signatures and Action Tem-
plates

Now that we know how to expressOperation Signa-
tures in terms ofAction Templates, we turn our at-
tention to Flow signatures, and see how to formalize
them in terms ofAction Templates. We shall see how
to integrateFlow Signatureswith the Interaction Sig-
natures model and clarify some inconsistencies by in-
troducing a new term that we callParametrizedAc-
tionTemplate.

When we look at howFlow Signaturesare de-
fined, we can see they are described as kind ofAc-
tion Templates. However, when taking a close look
to this, we realize that it is not convenient to derive
Flow Signatures directly from already formalizedAc-
tion Templates. In fact, Flow Signaturesdo not in-
volve parameters and their numbers as characteristics
which describe them statically. Moreover,Operation
Signaturesare not characterized by the Flow Informa-
tion Type which is strictly belonging toFlow Signa-

tures. Thus, we cannot express bothFlow Signatures
and Interrogation Signaturesdirectly in terms ofAc-
tion Templatesin one go.

streamInterfaceSignature InterfaceSignature

causality: String

ActionTemplate

name: String
causality: String

FlowInformationTypeFlowSignature

0..*
1

Figure 2: Flow Signatures and Action Templates

We resolve this problem by introducing the
termParametrizedActionTemplate as an intermedi-
ate level between interrogation Signatures andAction
Templates(see figure 2). Now,Operation Signatures
will be derived indirectly fromAction Templatesvia
Parameterized Action Template while Flow Signa-
tures derive its description directly from Action Tem-
plates. In doing so, the description ofAction Tem-
plateswill change. Indeed, sinceAction Templatesare
the common descriptive elements betweenOperation
SignaturesandFlow Signatures, an Action Template
will have neither parameters, nor their numbers in its
description. In fact, these two attributes belong now
to the termParametrizedActionTemplate and Ac-
tion Templates are now expressed in terms of the min-
imal description consisting of the name and causality
of Action Templateswhich is conceptually more con-
venient.

Having done this, we can join the two models
elaborated above into one model that describes all the
Interaction Signaturesin one blow (see figure 3).

Proceedings of the 6th WSEAS Int. Conf. on Software Engineering, Parallel and Distributed Systems, Corfu Island, Greece, February 16-19, 2007 129

Parameter

name: String
type: String

Parameter

name: String
type: String

InterrogationSignature

SignalInterfaceSignature

AnnouncementSignature

ActionTemplate

name: String
causality: String

FlowInformationType

InterfaceSignature

causality: String

OperationInterfaceSignature StreamInterfaceSignature

parameternumbers: Integer

FlowSignature

ParameterizedActionTemplate

invocation

termination0..*

0..*

0..* 0..*

2..* 0..*

1

0..*

1

0..1
rrekines isrefinedto

correspondsto
0..1

Figure 3: An UML model for Interaction Signatures

As we mentioned above, we have to add a con-
straint which ensures that the set ofTerminationsas-
sociated to anInvocationis never empty. But, asInter-
rogation Signaturesare related now toParametrized
Action Templates, the constraint will belong to the
ParametrizedActionTemplate term. The constraint
written in OCL is as follows:

InterrogationSignature
self.ParameterizedActionTemplate.termination→
size> 0

This constraint occurs in the context of Interroga-
tion Signature. Now that we have joined all the pieces
of the puzzle together, the final model can be seen as a
consistent description of Interaction Signatures within
the ODP computational viewpoint.

5 Conclusion and perspectives
In our past work [20], we have proposed a UML-
Based language for the QoS-aware enterprise specifi-
cation of ODP systems in which we focused mainly on
the specification of QoS from an enterprise viewpoint.
When trying to deal with the QoS concepts within the
computational viewpoint we have met with the issues
as discussed here. So, we decided to clarify some
ambiguities relevant to the computational viewpoint.
Now we have done that, our work serves as a contri-
bution within the field of formalizing the ODP com-
putational viewpoint, at the same time that it helps us
to move forward safely and confidently. We are now
dealing with the issue of formalizing QoS concepts
from the computational viewpoint.

References:

[1] ISO/IEC, Basic Reference Model of Open Dis-
tributed Processing-Part1: Overview and Guide
to UseISO/IEC CD 10746-1, 1994.

[2] ISO/IEC, RM-ODP-Part2: Descriptive Model
ISO/IEC DIS 10746-2, 1994.

[3] ISO/IEC, RM-ODP-Part3: Perspective Model
ISO/IEC DIS 10746-3, 1994.

[4] R. Romeo et al.,Modelling the ODP Compu-
tational Viewpoint with UML 2.0IEEE Interna-
tional Enterprise Distributed Object Computing
Conference, 2005.

[5] D.H.Akehurst et al.,Addressing Computational
Viewpoint Design, Seventh IEEE International
EDOC, IEEE Computer Society, 2003

[6] Behzad Bordbar et al,Using UML to specify QoS
constraints in ODP, Computer Networks Jour-
nal pp. 279-304, 2002

[7] R. Romero et al.,Action templates and causali-
ties in the ODP computational viewpointWOD-
PEC’04 pp. 23-27. 2004

[8] M.W.A. Steen and al., Applying the
UML to the ODP Enterprise Viewpoint,
http://www.cs.ukc.ac.uk/pubs/1999/819, 1999.

[9] P.F. Linington et al., The specification and
testing of conformance in ODP systems,
http://citeseer.nj.nec.com/170353.html, 1999.

[10] M. W. A. Steen et al.,Formalising ODP En-
terprise Policies, IEEE Com. Soc. Press,
EDOC’99, 1999.

[11] G. Booch et al.,The Unified Modelling Lan-
guage GuideAddison Wesly, 1998.

[12] J. Rumbaugh and al.,The Unified Modelling
Language Reference Manual, Addison Wesly,
1999.

[13] OMG, UML2.0 OCL Final Specification, OMG
Document ptc/03-10-14, 2003.

[14] pUML group,The Precise UML
http://www.cs.york.ac.uk/puml

[15] M. Gogolla et al.,State Diagrams in UML- A
Formal Semantics Using Graph Transformation,
proceedings of ICSE’98,1998.

[16] K. Lano et al., Formalising the UML on
Structured Temporal Theories, Conference
ECOOP’98, 1998.

[17] R. Breu et al.,Systems Views and Models of
UML, Physical Verlag, 1998.

[18] A Evans et al.,Core Meta-Modelling Semantics
of UML: The pUML Approach, Proceedings of
UML’99, pp 140-155, 1999

[19] J-M. Bruel et al.,Transforming UML Models
to Formal Specifications, UML’98-Beyond The
Notation, 1998.

[20] B. El Ouahidi et al., An UML-based Meta-
language for the QoS-aware Enterprise Spec-
ification of Open Distributed System, PRO-
VE’02, Kluwer Academic Publishers IFIP se-
ries, pp. 255-266, 2002.

Proceedings of the 6th WSEAS Int. Conf. on Software Engineering, Parallel and Distributed Systems, Corfu Island, Greece, February 16-19, 2007 130

