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Abstract: - The task of planning trajectories plays an important role in transportation, robotics, information 
systems (sending messages), etc. In robot motion planning, the robot should pass around obstacles from a given 
starting position to a given target position, touching none of them, i.e. the goal is to find a collision-free path 
from the starting to the target position. Research on path planning has yielded many fundamentally different 
approaches to the solution of this problem that can be classified as roadmap methods (visibility graph method, 
Voronoi diagram) and methods based on cell decomposition. Assuming movements only in a restricted number 
of directions (eight directional or horizontal/vertical) the task, with respect to its combinatorial nature, can be 
solved by decomposition methods using heuristic techniques. We present drawbacks of this approach 
(combinatorial explosion, limited granularity and generating infeasible solutions). Then, using the Voronoi 
diagrams, we need only polynomial time for finding a solution and, choosing a Euclidean or rectilinear metric, 
it can be adapted to tasks with general or directional-constrained movements.  
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1 Introduction 
The task of planning trajectories of a mobile robot 
in a scene with obstacles, has received considerable 
attention in the research literature [2,6,11,13]. A 
robot is usually represented by a single point or a 
circle. There are three basic types of robot motion 
planning algorithms [9].  

The first type is the potential field method. The 
goal has an attractive potential and the obstacles 
have a repulsive potential. The robot moves in the 
direction of the gradient of a potential field 
produced by the goal configuration and the 
obstacles. Unfortunately, this algorithm often 
converges to a local minimum in the potential field 
and therefore we will not deal with it.  

The second type is the cell decomposition 
method. Here, the scene is decomposed into cells 
and the outcome of the search is a sequence of 
adjacent cells between start and target from which a 
continuous path can be computed. The square cell 
decomposition can be used for 8-directional 
(horizontal, vertical and diagonal) robot motion in 
the plane with static rectangular obstacles. 
Unfortunately, this approach has many drawbacks 
such as combinatorial explosion, limited granularity 
and generating infeasible solutions as we briefly 
show in the next paragraph. This approach can be 

slightly improved using a case-based reasoning 
procedure [5]. 

The third type of motion planning algorithm is 
referred to as a roadmap method. The roadmap is 
built by a set of paths where each path consists of 
collision free area connections. There are several 
different methods for developing the roadmap such 
as visibility graphs and Voronoi diagrams [7]. As 
these methods do not have the drawbacks of the 
previously-mentioned ones, we will study them in 
more detail trying to combine them. 
 
 
2 Cell Decomposition 
First, let us consider robot motion planning reduced 
to navigating a point in a free space F. Then the cell 
decomposition can be stated as follows [9]: 
1.  Divide F into connected regions called cells. 
2.  Determine which cells are adjacent and construct 

an adjacency graph. The vertices of this graph 
are cells, and edges join cells that have a 
common boundary. 

3.  Determine which cells the start and goal lie in, 
and search for a path in the adjacency graph 
between these cells. 

4.  From the sequence of cells found in the last step, 
compute a path connecting certain points of cells 
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such as their midpoints (centroids) via the 
midpoints of the boundaries.  

Fig. 1 shows a decomposition using rectangular 
strips. The cells joining the start and target are 
shaded. The resolution of the decomposition is 
chosen to get a collision-free path dependent on the 
sensitivity of controlling our robot’s motion.  

 

 

 

 

 

 
Fig. 1: Vertical strip cell decomposition of the scene 
with 3 polygonal obstacles. 

 
This approach is not usable for 8-directional 

motion planning. For movements in 8 directions, the 
scene decomposition shown in Fig. 2 may be used. 
Here, all cells have the same square shape.  

 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2: Grid representation of 2D space with starting 
and target positions of the robot and static obstacles 

Fig. 3 shows one of the possible paths from the 
starting to the target position.  

The cell decomposition-based path planning in 8 
directions has the following drawbacks: 
• Robot size must be smaller than cell size. In the 

opposite case, we are not able to determine 
uniquely the robot position. This decreases the 
possible range of grid.  

• If we use stochastic heuristic techniques (genetic 
algorithms, simulated annealing, tabu-search, …) 
for finding trajectories, then their crossover, 

mutation and neighbourhood operators generate 
many infeasible solutions (movements out of 
grid, collisions with obstacles). In Fig. 4 we can 
see that, although the neighbouring cells are free, 
the robot cannot move between them without 
colliding with obstacles. 

• Increasing the range of the grid, satisfying the 
first condition results in combinatorial explosion. 
Assume m=n (square grid). Then the cardinality 
of the search space is equal to 82n = (23)2n = 26n, 
which, even for not very high values of m and n, 
leads to a rather intractable amount of possible 
paths, for m=n=20, for example, we get 26n = 2120 
= (210)12 = (1024)12 > 1036 paths, which gives no 
chance to achieve the optimal solution in a 
reasonable amount of time.  

 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3:  A path with movements in 8 directions 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

Fig. 4:  Collisions with obstacles and collision-free 
paths 
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The computation may include a case-based 
reasoning procedure [5].  

Case-based reasoning (CBR) is based on the 
retrieval and adaptation of old solutions to new 
problems.  

A general CBR cycle may be given by the 
following steps: 
• Retrieve the most similar case or cases;  
• Reuse the information and knowledge in that 

case to solve the problem;  
• Revise the proposed solution;  
• Retain the parts of this experience likely to be 

useful for future problem solving.  

If, for a given start cell cs
0 and a given goal cell 

cg
0, the case-base does not contain a path leading 

from cs
0 to cg

0, a similar path is retrieved according 
to the formula  

 
 
 
 (1) 

The problem is that the new solution gained as 
an adaptation of the most similar case in old 
solutions can be worse than a new computation that 
is not based on the stored cases as Fig. 5 shows.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5:   1-2-3-4 = old solution;  
1’-1-old solution-4-4’ = new solution;  
1’-2-3-4’ = optimal  solution 

 
 
3 Roadmap Methods 
The most important approaches included in roadmap 
methods are based on visibility graphs and Voronoi 
diagrams.  

A visibility graph is a graph whose vertices 
include the start, target and the vertices of polygonal 

obstacles [2,7]. Its edges are the edges of the 
obstacles and edges joining all pairs of vertices that 
can see each other. Unfortunately, the shortest paths 
computed by using visibility graphs touch obstacles 
at the vertices or even edges of obstacles and thus 
are not very good in terms of safety. This drawback 
can be removed using Voronoi diagrams. 

A Voronoi diagram of a set of sites in the plane 
is a collection of regions that divide up the plane. 
Each region corresponds to one of the sites and all 
the points in one region are closer to the site 
representing the region than to any other site [1,3,9].  

More formally, we can define Voronoi diagrams 
in mathematical terms. The distance d(pi , pj) 
between two points pi = (xi, yi) and pj = (xj, yj) in the 
plane can be defined by the Euclidean metric  

 2( , ) ( ) ( )i j i j i jd p p x x y y= − + − 2  (2) 
( )

0 0

( , ) ,
( , ) arg min

( , ) , ( , )

s g
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F P c c
or rectilinear (or Manhattan) metric  

 ( , ) | | | |i j i j i jd p p x x y y= − + −  (3) 

Definition: Let P={p1, p2, … , pn}⊂ ℜ2 be a set of 
points with the Cartesian coordinates (x1, y1), … , 
(xn, yn) where 2 < n < ∞ and pi ≠ pj for i ≠ j. We call 
the region  
 { }2( ) | ( , ) ( , ) for i i jV p q d q p d q p j i= ∈ℜ ≤ ≠   (4) 

the planar Voronoi polygon associated with pi (or 
the Voronoi polygon of pi) and the set given by 

 { }( ), , ( )iV V p V p= … n  (5) 

the planar Voronoi diagram generated by P (or the 
Voronoi diagram of P). We call pi of V(pi) the site or 
generator point or generator of the i-th Voronoi 
polygon and the set P={p1, p2, … , pn} the generator 
set of the Voronoi diagram V. 
 

Using the selected metric, we divide Voronoi 
diagrams into two classes: the Euclidean and 
rectilinear Voronoi diagrams. If we use the 
rectilinear metric for a Voronoi diagram, then, due 
to the rectilinearity, each straight-line segment of a 
bisector in the now rectilinear Voronoi diagram will 
be either horizontal, vertical, or inclined at 45° or 
135° to the positive direction of the x-axis [4,10]. 
This finding suggests using the rectilinear Voronoi 
diagram for the 8-directional motion planning. 

For time complexity considerations it is 
necessary to know the properties of the Voronoi 
diagrams and algorithms of their constructions. 
Therefore, we will briefly summarise them in the 
next paragraphs. 

P c c
d c c d c cδ δ

⎧ ⎫⎪ ⎪′ ′ = ⎨ ⎬
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1 

2 
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1’ 

4’ 

 

Proceedings of the 6th WSEAS International Conference on Signal Processing, Robotics and Automation, Corfu Island, Greece, February 16-19, 2007      129



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
Fig. 6: Examples of the Euclidean and rectilinear 
Voronoi diagrams 

 
Assume that Voronoi diagrams are non 

degenerate (no four or more of its Voronoi edges 
have a common endpoint). Then the following is 
satisfied [1,2]: 
• Every vertex of a Voronoi diagram V(P) is a 

common intersection of exactly three edges of 
the diagram. 

• A point q is a vertex of V(P) if and only if its 
largest empty circle CP(q) contains three points 
on its boundary. 

• The bisector between points pi and pj defines an 
edge of V(P) if and only if there is a point q such 
that CP(q) contains both pi and pj on its boundary 
but no other point. 

• For any q in P, V(q) is convex.  
• Voronoi diagram V(P) of P is planar. 
• Polygon V(pi) is unbounded if and only if pi is a 

point on the boundary of the convex hull of the 
set P.  

• The number of vertices in the Voronoi diagram 
of a set of n point sites in the plane is at most 
2n−5 and the number of edges is at most 3n−6. 

The fundamental algorithms and their 
modifications include the incremental algorithm, 
random incremental algorithm, divide and conquer 
algorithm and plane sweep algorithm (or Fortune’s 

algorithm). More details can be found e.g. in 
[1,2,3,6]. The time complexity of the incremental 
algorithm is O(n2) in the worst case, and O(n log n) 
for the other three algorithms. 
 
 
4 Voronoi Diagrams with Obstacles 
If a generator set of a Voronoi diagram represents 
point obstacles and other obstacles are not present in 
the plane, then the robot can walk along the edges of 
the Voronoi diagram of P that define the possible 
channels that maximise the distance to the obstacles, 
except for the initial and final segments of the tour. 
This allows us to reduce the robot motion problem 
to a graph search problem: we define a subgraph of 
the Voronoi diagram consisting of the edges that are 
passable for the robot. However, some of the edges 
of the Voronoi diagram may be impassable. Then 
these edges must be omitted from the diagram.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 7: Voronoi diagram with redundant edges 
 
For scenes with point, straight-line and 

polygonal obstacles, the simplest way of finding 
optimal trajectories is to compute ordinary Voronoi 
diagrams for vertices of obstacles and then remove 
those of its edges that intersect obstacles. We get 
more precise solutions by approximating the 
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polygonal edges by line segments and then applying 
the previous approach. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig. 8: Voronoi diagram for point, line and 
polygonal obstacles 

 
An implementation of this approach is described 

in [12]. Using this program, we can determine the 
number of line segments that approximate the edges 
of polygonal obstacles and compute the final 
Voronoi diagram with more precise edges. The last 
two figures demonstrate the results. Fig. 7 and 8 
show the Voronoi diagram for point, line and 
polygonal obstacles with 20 edge segments before 
and after removing redundant edges.   

Fig. 9 shows the same situation as in Fig. 8, but 
for a 40-line-segment approximation, and it also 
includes the shortest path between two positions 
along the Voronoi diagram edges. 

This principle can also be used for rectilinear 
Voronoi diagrams that build maps for 8-directional 
robot motion planning. 
 
 
5 Conclusions 
In this paper, we compared cell decomposition and 
roadmap methods with respect to their time 

complexity and proposed applications of the 
Voronoi diagrams to general and 8-directional 
motion planning. 
 

 
Fig. 9: Voronoi diagram-based path between two 
positions 
 
As algorithms for constructing the Voronoi 
diagrams run in polynomial time, the number of 
their edges is linearly dependent on the number of 
obstacles and algorithms for searching the shortest 
paths in graphs are polynomial, too. Since this holds 
for all additional operations for finding a collision-
free path of a robot (replacements, extensions of the 
rectangular obstacles), the overall time complexity 
of all the algorithms proposed is polynomial. This 
approach eliminates all the drawbacks of classical 
methods (combinatorial explosion, low boundaries 
for grid representation and generating many 
infeasible solutions). 

In the future, we will try to generalize this 
approach for cases of more complex shapes of 
obstacles and movable obstacles.  
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