
State Estimation And Fault Diagnosis Of Industrial Process 

By Using of Particle Filters 
 

SAREH BAHMANPOUR 1 , MAHDI BASHOOKI 1 , M. H. REFAN 2  
1 MAPNA Electrical and Control Company (MECO), Karaj, IRAN 

2 S. Rajaee University, Lavizan, Tehran 16788, IRAN 
  

 
 

Abstract: - It is no surprise that the general problem of fault detection has received considerable attention in a 
wide variety of industrial systems such as chemical and petrochemical industries, autonomous underwater vessels, 
robots, and even space vehicles. We have presented a probabilistic approach to state estimation and fault diagnosis 
in complex industrial processes. In particular, we adapted a Jump Markov Linear Gaussian (JMLG) model to 
describe a continuous stirred tank reactor. Expectation Maximization (EM) algorithm identifies the parameters of 
this process. After identification, real-time particle filtering algorithms were adapted to diagnosis of the state of 
operation of continuous stirred tank reactor. For this application, we compared two particle-filtering variants: 
standard particle filtering and Rao-Blackwellised particle filtering. The particle filtering estimates were then used 
to drive an automatic control system. 
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1   Introduction 

In vast varieties of areas such as robot navigation 
and diagnosis of complex industrial systems, Real-
time monitoring is very important [1, 2]. In this 
research, we concentrated on online monitoring of 
complex industrial processes. These processes have a 
number of discrete states, corresponding to different 
combinations of faults. Based on the discrete states, 
the dynamics can be very different. Even if there are 
very few discrete states, exact monitoring is 
computationally unfeasible as the state of the system 
depends on the history of the discrete states. However 
there is a need to monitor these systems in real time to 
determine what faults could have occurred. 

Here, we proposed a real-time, automatic strategy 
in order to estimate the states of industrial processes 
using noisy measurements of continuous variables. 
This approach enables us to reduce the cognitive load 
experienced by human operators. It also serves to 
minimize the number of instruments and to open up 
room for sophisticated control strategies. 

In particular, we adopt a Jump Markov Linear 
Gaussian (JMLG) model to describe a continuous 
stirred tank reactor with different linear regimes of 
operation. A discrete state variable controls the 
switching between the various linear regimes. The 

parameters of each regime are identified off-line with 
the Expectation Maximization (EM) algorithm [3]. 
Once the stationary parameters have been identified, 
real-time Rao-Blackwellised Particle Filtering (RBPF) 
algorithms are used to execute on-line estimation of 
the continuous and discrete states of the system [4, 5]. 
These estimates are used to determine the control 
policy of a PID controller. 

 
2   Monitoring Process  

System monitoring and timely fault detection 
capabilities are critical requirements of many modern 
systems. For years, these features have only been of 
utmost importance in safety critical systems, such as 
civil and military aviation or nuclear power plants. 
However, recently other factors have been playing a 
major role in recognizing the need of these 
capabilities in other technical systems. 

Processes in the chemical and petrochemical 
industries are becoming larger and more complex. 
Associated of this development, each hour of down 
time has a high cost, and the source of malfunction or 
fault is more difficult to locate The purpose of 
monitoring of faults is to reduce the occurrence of 
sudden, disruptive, or dangerous outages, equipment 
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damage, and personal accidents, as well as assistance 
of the operation of the maintenance program. 

Diagnosis can detect/determine of faults that could 
occur in the process itself, in its measuring 
instruments, or in its actuators. By state estimation we 
mean the identification of different operating 
conditions which the process can be in. In dynamic 
industrial processes, we consider a continuous stirred 
tank reactor, which has exclusively modeled with 
dynamic systems characterized by a continuous-time 
operation. If the dynamic system has non-linear 
behavior, it has to be modeled as a series of linear 
segments. Let us consider a multi-input multi-output 
continuous dynamic system, as defined below.  
 
2.1  Continuous Stirred Tank Reactor 

This reactor consists of a well -stirred tank 
containing the enzyme, which is normally 
immobilized. The substrate stream is continuously 
pumped into the reactor at the same time as the 
product stream is removed. If the reactor is behaving 
in an ideal manner, there is total back-mixing and the 
product stream is identical with the liquid phase 
within the reactor and invariant with respect to time. 
Some molecules of substrate may be removed rapidly 
from the reactor, whereas others may remain for 
substantial periods. A Continuous Stirred Tank 
Reactor (CSTR) is a complex nonlinear, multivariable 
system; as shown in Figure 1. It involves a second-
order exothermic reaction )2( BA → , where 2 
components of A react irreversibly at specific reaction 
rate of k, in order to form product of B [6].  

 
Figure 1. Continuous Stirred Tank Reactor 

Where the reaction rate constant, k, follows the 
Arrhenius equation (1). According to this equation, 
the effect of the temperature, )(tTr  on the specific 
reaction rate of k is usually exponential. This 
exponential temperature dependence represents one of 
the most severe nonlinearities in chemical engineering 
systems. The overall reaction rate, R, is defined as the 
rate of change of moles of any component per volume 
due to chemical reaction divided by that component’s 
stoichiometric coefficient. Due to this reaction, we 
have 2

AkCR = . Then, the overall rate, R will vary 
with temperature, )(tTr  and with the concentration of 
the reactant AC  raised to the 2nd power (second-order 
reaction). As we can see, this term R is highly 
nonlinear. 
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2.2 Modeling 

The mathematical model for this CSTR involves a 
mass balance on A component, as expressed by 
equation (2), commonly known as a component 
continuity equation. 

The first law of thermodynamics puts forward the 
principle of conservation of energy. The mathematical 
model must include an enthalpy balance on reaction 
mass, and an enthalpy balance on jacket (which water 
is flowing through in). In this case, the flow of 
internal energy into the system, minus the flow of 
internal energy out of the system, plus the heat added 
to the system by reaction is equal to the rate of change 
of internal energy inside the system. The balance on 
reacting mass is given by equation (3) and the balance 
on the jacket by equation (4). 
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Some assumptions were made to derive these 
equations. These equations represent a very simplified 
nonlinear CSTR model (the t functionality was 
omitted for clarity). Nevertheless, this simpler model 
captures the nonlinearity we are interested in. we will 
only measure the following 3 variables: the output 
concentration )(tC A , the reactor temperature )(tTr , 
and the output jacket temperature )(tT jo .  
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Table 1 demonstrates a complete definition of the 
variables [9] and Figure 1 conveys their meaning 
graphically as well as some instruments for 
monitoring and control purposes. Table 2 gives a 
complete description of this instrumentation. 

 
Table1. Variables 

Var Value Units Definitions 

AC  3.5955 3/ ftlb  Concentration of reactant A in 
 reactor and exit stream 

AiC  10.8 3/ ftlb  Concentration of reactant A in feed

a  2.560 R0  
Constant in Arrehenius expression 
For  reaction rate 

k  0.0278 min/3 −lbft  Reaction rate constant 

0k  1.43 min/3 −lbft  Constant in Arrehenius expression

H∆− 867 AlbBtu /  Heat of reaction 

pC  0.9 FlbBtu 0/  Specific heat of reacting mixture 

pjC  1.0 FlbBtu 0/  Specific heat of water 

A  500 2ft  Effective jacket transfer area 

ρ  80 3/ ftlb  Density of reacting mixture 

U  1.2 FftBtu 02min/ Heat transfer coefficient 

riT  150 F0  Input reactants temperature 

rT  190.0611 F0  Reactor temperature 

rmT  190.0611 F0  Measured reactor temperature 

joT  120.0222 F0  Outlet Jacket temperature 

jiT  80 F0  Inlet Jacket temperature 

V  250 3ft  Reactor Volume 

W  1000 min/lb  Feed mass flow rate 

jW  1050 min/lb  Water cooling rate at jacket 

jM  4000 lb  Mass of jacket water 

 
The nonlinear model described by equations (2-4) 

was linearized to build the JMLG model. Then, four 
discrete modes were tested. 

 
Table2. CSTR Instrumentation 

Tag-name Functional 
name Description 

FT-100 Flow 
sensor/transmitter Input reactants flow 

FT-200 Flow 
sensor/transmitter Input water flow 

FV-100 Control valve Reactants flow valve 
FV-200 Control valve Water flow valve 

TT-100 Temperature 
sensor/transmitter Reactor temperature 

TT-200 Temperature 
sensor/transmitter 

Output water 
temperature 

XT-100 Analyzer 
sensor/transmitter 

Output products 
concentration 

We consider a fouled surface (dirty surface) in the 
jacket as a possible faulty point (of course, there are 
many possible faulty points in this system). A fouled 
surface can be caused by normal operating conditions 
over an extended time, or by stochastic problems such 
as cooling water with a high concentration of minerals 
or salts. Surface fouling reduces the global heat 
transfer coefficient )(tU  in the mathematical model. 
We defined four of the possible discrete modes for 
this nonlinear multivariable system as below in Table 
3. 

 
Table3. CSTR Operating conditions 

Z Model 
Name Description Variation 

1 Normal Clean heat transfer area none 

2 Fouling-1 Dirty heat transfer area 5% fouling 

3 Fouling-2 Dirty heat transfer area 10%Fouling 

4 Fouling-3 Dirty heat transfer area 15%Fouling 

 
We obtain the sampled state-space representation 

using the continuous state-space representation. The 
continuous state-space is generated by the system of 
linear differential equations. 
For the “normal” discrete mode, 1=tz : 
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The values of processn  and tmeasuremenn  are fixed for 
each test. Corresponding results were obtained for 
each faulty discrete mode )4,3,2( andzt = . Where 
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the initial states are ),(~ 000 ΣµNx  and )(~ 00 zPz . That is 
important to notice that for each realization of tz , we 
have a single linear-Gaussian model. If we know tz , 

we could solve tx  exactly, using the Kalman filter 
algorithm. 

The aim of the analysis is to compute the marginal 
posterior distribution of the discrete states )|( :1:0 tt yzP . 
This distribution can be derived from the posterior 
distribution )|,( :1:0:0 ttt yzdxP  by standard 
marginalization. The posterior density satisfies the 
following recursion:  

 
                  (7) 

 
This recursion involves intractable integrals. One, 

therefore, has to resort to some form of numerical 
approximation scheme. 

 
 

3   Problem Solutions  
Most existing model-based fault diagnosis 

methods use a technique called analytical redundancy 
[7]. Real measurements of a process variable are 
compared to analytically calculated values. The 
resulting differences, named residuals, are indicative 
of faults in the process. Many of these methods rely 
on simplifications and heuristics. Here, we propose a 
principled probabilistic approach to this problem.  

 
 

3.1 Particle Filtering 
In the PF setting, we used a weighted set of 

samples (particles) ( ){ }N
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δ  denotes the Dirac-Delta function. 
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t yzdxP , at time t. Since we cannot 

take samples from the posterior directly, the PF 
update is accomplished by introducing an appropriate 
importance proposal distribution ),( :0:0 tt zdxQ  from 

which we can obtain samples. The basic algorithm, 
Figure 2, consists of two steps: sequential importance 
sampling and selection (see [5] for a detailed 
derivation). This algorithm uses the transition priors 
as proposal distributions;   for the selection step, we 
used a state-of-the-art minimum variance resampling 
algorithm [8]. 

 
3.2  Rao-Blackwellised Particle Filtering  

By considering the factorization 
)|(),|()|,( :1:0:0:1:0:1:0:0 tttttttt yzpzyxpyzxp = , it is possible to 

design more efficient PF algorithms.  
The density ),|( :0:1:0 ttt zyxp  is Gaussian and can be 

computed analytically if we know the marginal 
posterior density, )|( :1:0 tt yzp . This density satisfies the 
alternative recursion:  

 
(9) 

 
Sequential Importance Sampling 
For i=1,…,N, sample from the transition priors 
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For i=1,…,N, evaluate and normalize the importance 
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Selection (Resampling step) 
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Figure2. Particle Filtering Algorithm 
 
If equation (7) does not admit a closed-form 

expression, then equation (8) does not admit one 
either and sampling-based methods are still required. 
(Also note that the term ),|( :01:1 ttt zyyp −  in equation (9) 
does not simplify to )|( tt zyp  because there is a 
dependency on past values through tx :0 . Now 
assuming that we can use a weighted set of samples 
{ }N
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:0 , =  to represent the marginal posterior 

distribution 
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The marginal density of tx :0  is a Gaussian mixture 
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That can be computed efficiently with a stochastic 
bank of Kalman filters. That is, we use PF to estimate 
the distribution of tz  and exact computations 
(Kalman filter) to estimate the mean and variance of 

tz . In particular, we sample )(i
tz  and then propagate 

the mean )(i
tµ  and covariance )(i

tΣ  of tx  with a 
Kalman filter:  
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This is a basis of the RBPF algorithm that was 
adopted in [4].  

 
 

4   Results  
We tested the 2 inference algorithms for N=100 

and T=50. These simulations were designed using the 
transition matrix and prior probabilities shown below 
[9]: 
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Figure 3 plots the tracking error for each 
algorithm. As it can seen, the RBPF algorithm can 
track the state better than PF algorithm. If we have 
several states, for example 3 or 4, Figure 4 will be 
resulted. In this plot, it is clear  that RBPF algorithm 
is again better than the other. Figure 5 and 6 show the 
states, outputs and discrete modes uses in simulation. 

Figure 7 and 8 plots the Probability density of PF and 
RBPF algorithms. 
 
5   Conclusions 

 Results show that the RBPF algorithm gives a 
very low diagnosis error per number of particles. It 
works significantly better than standard Pf. RBPF also 
gives a very low diagnosis error per unit of computing 
time, despite its greater computational expense per 
particle compared with standard PF. Faulty conditions 
usually have a very low probabilities. Standard 
numerical approximations have trouble with this 
situation because of a very small number of particles 
are assigned to a faulty discrete mode, despite the 
observations. However, RBPF samples the possible 
discrete modes from their true posterior distribution, 
capturing evidence of faulty conditions and allowing 
them to be identified. RBPF also gives lower variance 
than standard PF per number of particles. This 
advantage, based on the Rao-Blackwell formula, 
grows as the number of particle is increased. 

 

 
Figure3. CSTR (1 discrete Mode) 

 
 

 
Figure4. CSTR (several discrete modes) 
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Figure5. 1Discrete mode, states, output 

 
 

 
Figure 6. 3discrete modes, states, outputs 

 
 

 
Figure7. Probability distribution (RBPF algorithm), 1 

discrete mode 

 
Figure8. Probability Distribution (RBPF algorithm), 3 

discrete modes 
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