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Abstract: - A model reference adaptive controller with mixed variable structure-conventional adaptation law 

(VS-PA MRAS) using input–output measurement is proposed for single input single output systems. 

Adaptation law is mixed of variable structure type for numerator parameters and conventional type for 

denominator parameters of transfer function. Therefore only the bounds on numerator parameters of transfer 

function are required. Global exponential stability is proved based on Lyapunov criterion. Transient behavior 

is analyzed using sliding mode theory. 
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          1   Introduction 
  Model reference adaptive control using input-

output measurement were mainly developed in 

1980's [1, 2]. Adaptation law was based on 

parameter estimation using a pure integral action. 

In the subsequent years, it became evident that 

continuous adaptation laws had some problems 

such as 1) difficulty in the analysis of transient 

behaviour 2) guarantee of only global (but not 

asymptotic) stability 3) undesirable transient 

responses and tracking performance and 4) lack of 

robustness. Some researchers proposed some 

improvements on adaptation law [3,4,5,6,7]. All of 

these methods were categorized of parametric 

model reference adaptive control. 

  On the other hand, variable structure model 

reference adaptive control was proposed by some 

researchers [5]. The variable structure systems 

(VSS) have been studied in great detail in the 

literature [8]. The basic concept of the variable 

structure control is that of sliding mode control. 

Switching control functions are generally designed 

to generate sliding surfaces, or sliding modes, in 

the state space [9]. When this is attained, the 

switching functions keep the trajectory on the 

sliding surfaces and the closed loop system 

becomes insensitive, to a certain extent, to 

parameter variations and disturbances [9, 10 ,11]. 

 

 

2   MRAC with Mixed Adaptation 

Law  
2.1   Problem definition and formulation 
  Consider a linear time-invariant plant as 
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where A is an (n× n) matrix and h and b are n-

vectors. The transfer function of the plant is G(s)  

where  
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with G(s) strictly proper, D(s) is a monic 

polynomial of degree n, N(s) is a monic 

polynomial of degree m( ≤ n-1), and K is a constant 

gain parameter. A reference model having output 

my characterized by 
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where Am is an (n× n) matrix. The transfer function 

of the reference model is Gm(s) where 
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  We further assume that: 1) the plant is completely 

observable and controllable, 

   2) N(s) is Hurwitz, i.e., G(s) is minimum phase, 

   3) the reference model has the same relative 

degree n*(= n – m) = 1 as the plant,  

   4) sgn(K) = sgn(Km), positive for simplicity. 

  The purpose is to find a control law u(t) such that 

the output error 

 myye −=0                                                        (5) 

tends to zero asymptotically for arbitrary initial 

conditions. 

  

2.2   Mixed adaptation law  
  The following input and output filters are used 

[1,5] 

 uVV  λ+Λ=&                                                     (6) 
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 yWW  λ+Λ=&                                             (7) 

where Λ  is an (n-1× n-1) matrix and is chosen 

such that )det()( Λ−= sIsNm . The regressor vector 

is defined as 

 ]     [ rWyV
TTT =ρ                                       (8) 

 We choose structure of controller as 

 ωθβ TT
Vtu +=)(                                            (9) 

where  

                  ]  ...    [ 121 −= n
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and the elements of β   are adjusted using VS 

approach by designing switching functions iβ  as 

described in the followings.  

  We know there exist constant control parameter 

vectors *σ  and ]  [ **
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becomes similar to the reference model transfer 

function. In this situation we have 
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therefore 
*

0σ , 
*

1σ   and 
*

k  would be known if 

)(sG was known. But we are encountered to the 

case that )(sG  is not known, and the vectors β  

and θ  must be adapted such that the error )(0 te  

tends to zero in finite time. Substituting control u 

from (9) to (1) and (6) we have 

 ωθβ TT
bVbAXX ++=&                                 (12) 
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and substituting output y from (1) to (7) we have 

 XWW Th λ+Λ=&                                          (14) 

adding terms ωθβ
TT

bVb
** ±±  to the right side 

of (12) and terms ωλθλβ
T

V
T ** ±±  to the right 

side of (13), yields 
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where *θθφ −= . Introducing the state vector Z for 

the whole system composed of the plant and filters, 

ie, relations (1), (6) and (7), as 

 ]    [ TTTT WVXZ =                                        (17) 

we can write  
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  Also, the system defined by },,{ hBA  is a non 

minimal realization of Gm(s). Thus the reference 

model can be represented by (3n-2)th order 

differential equations as 
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where         ]    [ *** TTTT

m WVXZ =                     (22) 

then we can write the error equation of the total 

system as 

 ωφββ TT Vee  )( *
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where    myye −=0  , *θθφ −=  , mZZe −=    (24) 

because the transfer function Gm(s) is a real 

positive definite transfer function, there exist  

matrices 0 PP T 〉=  and 0 QQ T 〉=  such that 

 QPP
T

−=+ AA  ,       hkB = P                       (25) 

  A block diagram of the system is presented in 

Figure [1].   

 

2.3   Stability  
  We introduce a Liapunov function as 
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time differentiating it, with the first consider to 

equations (23), and then regarding equations (25) 

and (15), and finally consider to equation (18), 

yields         

]
11

[)(
1

2

1
0

*

0 φφωφθβ && TTTT eVeQee
kkk

++−+−=Γ  

                                                                        (27) 

using the conventional adaptation law for adapting 

the parameters θ , as  

 ωθφ   )sgn( 0ek−== &&                                        (28) 

we can write 
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  Now, we choose the switching functions iβ , as 

 ) (sgn 0eviii kσβ −=  , where  
*

 ii σσ 〉      (30) 

therefore this can concluded that         
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                               Figure 1. Block diagram of the system. 
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the terms in the summation are positive, therefore 

0 〈Γ &  and regarding (26) asymptotic stability is 

proved. 

 

2.4  Transient behavior  
  In the following section, we analyse the transient 

response. This will be shown that the hyper-surface 

 0 == eS
T

h                                                    (32) 

is a sliding surface, which fulfilled the following 

conditions    
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  Now if define a signal  η   as:    ωφη T=    

  Then regarding to  PkBh
TT =   we can write 
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then there exists a time 0tT〉  such that for all times 

Tt〉  and with condition 00 〉e  we have 
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this means that for all times Tt〉 , the surface  

0 == eS
T

h  will be a sliding surface. Also 

regarding (23) and (32) we can write        
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and consider to (35) this can concluded that for 

times 1tt〉  we have 

 α  〉S&
                                                           

(39) 

  Equations (37) and (39) show that S tends to zero 

in a finite time, and sliding mode take place on the 

surface 0 == eS
T

h . 
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3   Simulation and results  
  Simulation results have been presented for an 

unstable second order system. Responses for both, 

mixed adaptation adaptive stabilizer and 

conventional one are presented. 

  Consider an unstable second order system as 

 uX
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or in transfer function form 
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we assume that the parameters 1a and 2a  of the 

system actually varied as  t)sin(11 π+=a   and   

 t)sin(22 π+−=a , but designer designer only know 

the range of variations as   20 1 ≤≤ a    and   

13 2 −≤≤− a  . The reference model is chosen as 
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or in transfer function form 
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consider to equations (6), (7), (9), (24), (28), and 

(30), we can write 
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  Simulation results have been presented in Figure 

2.1 for step input  r = 8 , and Figure 2.2 for 

sinusoidal input   tr π2.3sin5.15.0 +=  . 

 

 

4   Conclusion 
  A mixed variable structure - conventional  model 

reference adaptive controller for single input single 

output systems have been proposed, designed and 

analyzed. Adaptation law is mixed of variable 

structure type for numerator parameters and 

conventional type for denominator parameters of 

transfer function. Therefore only the bounds on 

numerator parameters of transfer function are 

required. Global exponential stability is proved 

based on Lyapunov criterion. Transient behavior is 

analyzed using sliding mode theory. 
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                  Figure 2.1. Simulation results, step input  r=8, 

                                                                                 initial conditions: T
X ]0   1[)0( = ,   

T

mX ]0   0[)0( = . 
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                        Figure 2.2. Simulation results, sinusoidal input  tr π2.3sin5.15.0 +=  , 

                                                                                 initial conditions:
T

X ]0   1[)0( = ,  
T

mX ]0   0[)0( = . 
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