
Towards Software Requirements Extraction Using Natural Language
Approach

AMJAD HUDAIB, BASSAM HAMMO, YARA ALKHADER

DEPARTMENT OF COMPUTER INFORMATION SYSTEMS
University of Jordan

Amman 11942 Jordan
JORDAN

Abstract: - In this paper, we present an automated support environment to reduce the time and efforts required
to produce and maintain a reusable specification document. Our proposed model has two operation modes: the
first one is the forward mode in which our model automatically converts English natural language
requirements into UML class diagram models. While the second one is the backward mode in which our
model automatically reverses UML class diagram models into English natural language requirements. We
compared our model with previous models and the results are promising.

Key-Words: - Requirements Engineering, UML Class Diagram, Natural Language Processing, Specification
 Document, Software Design.

1 Introduction
Requirement engineering is the first step toward
building software [12] [13]. Requirement
engineering main concerns are to establish, structure
and model software specifications into written
documents namely specification documents. Those
documents serve as the mean of communication
between different stakeholders of software [2, 14].
To realize the importance of the specification
document many of the work in requirement
engineering field has been targeting the way
specification documents describe their requirements
[1, 11].
Although there were many attempts to use formal
and semiformal languages for describing
specification documents, the use of the informal
natural languages remains the most widely in use [6]
[5]. However, sever problems emerged while using
natural language in specification documents: first of
all, they can be ambiguous, inconsistent and
incomplete [10] [14]. Secondly, they are never
understood by computers directly without
preprocessing [10].Therefore, some reinterpretations
of the natural language requirements are usually
conducted by the requirements engineer before
proceeding with system design and development [6].
This reinterpretation is non-trivial and error prone. It
needs a considerable amount of experience and it is
time consuming. What makes it even implausible is
the fact that requirements evolves in order to reflect
real world changes. This change in the specification
document requires reinterpreting the specifications

into models and updating the software accordingly
[9].
In our work, we present a model that has two
operation modes: The forward operation mode
which automates the reinterpretation of natural
language requirements into UML class diagram
models. The second mode is the backward operation
mode which automatically reveres the models into
natural language requirement specifications. The
advantage from our operation scheme is to provide
seamless model - natural language view.

2 Related Works
Reference [6] used the eXtensible Markup Language
(XML) and Two Level Grammar (TLG) to
transform natural language into the formal object
oriented Vienna Development Method (VDM++).
The main concern of their work was to automate the
management of formal requirements keeping them
compatible with their natural language counterpart.
However, in [1] they built a requirements
engineering supporting environment that analyzes
and synthesize different views given requirements
written in natural languages. In their work, they used
a shared repository and multiple viewers and
modelers to provide different interfaces for the given
natural language requirements. Where in [9], the
authors automated the transformation of natural
language into the semiformal Unified Modeling
Language (UML) using role based technique, which
is a conceptual model used to produce object
oriented static views. In fact, they first translated

Proceedings of the 6th WSEAS Int. Conf. on Software Engineering, Parallel and Distributed Systems, Corfu Island, Greece, February 16-19, 2007 155

mailto:ahudaib@ju.edu.jo
mailto:b.hammo@ju.edu.jo
mailto:yarakh@acm.com

natural language requirement into the 4W language
which is a constrained English language and then
they used the generated set of requirements
expressed using the 4W language as input to their
automation process.
Reference [10] investigated the ability to determine
software functionalities from software requirements
specifications expressed in natural languages. The
authors illustrated the deficiencies and pointed the
difficulties in processing natural languages. The
objective of the study was to develop criteria for
identifying functions. In fact, they illustrated that the
use of a simple method of determining functions is
not productive.
A Knowledge-Based Natural Language System
(KBNL) was introduced in [3]. The system
presumes the existence of a model that describes the
world and how language relates to the world. The
system parses the English expression analysis theme
and then it converts it into the knowledge base
representation.

3 The Model Architecture
Fig.1 depicts the architecture of our model. The
model is made of three different layers. The first
layer is responsible of preprocessing natural
language requirement specifications. This layer
interacts with the natural language requirements
repository in which natural language is stored. The
second layer is the core of our model in which most
of the processing is performed. At this layer, an
XML representation is generated for the inputted
natural language requirements. This representation
is stored in the XML requirements repository. The
third layer responsible of generating the UML
diagrams from the XML representations. Afterward,
the generated UML diagrams are stored in the UML
class diagram repository.
Our model operates in two modes: the forward mode
and the backward mode. Fig.2 represents the two
operation modes and their components.
Next we describe the main components of our
model.

• The natural language preprocessor: it is
responsible for ensuring that the inputted
requirements are free of spelling errors and
are well structured in terms of using
punctuations.

• The natural language processor: this
component generates XML representation
for the given requirements. In this
representation, natural language tokens are
annotated with metalanguage presenting
their part of speech and their part of

sentence. Fig.3 presents a natural language
requirement sample collected from [6]; its
XML representation is depicted in Fig.4.

Fig.1. The Model high level architecture

• The manual domain processor: in this

process the requirements engineer uses
domain knowledge to manually eliminate
redundancy and resolve similarities.

• The rule based functional analyzer: this
process represents the core of our model. In
this process, a set of rules are used to
resolve ambiguity problems frequently
occurring in specification documents
namely: compound names, collections of
objects, pronouns, connectors and relations.
The output of this process is an enhanced
and modified XML representation than the
previously generated one.

• The XML schema mapper: this process
generates an XML schema for the processed
XML representation; the schema represents
the mapping between the XML structure
and our targeted model which is the UML
class diagram. Fig.5 presents the XML
schema generated for the XML
requirements in Fig.3. The XML schema
representation is used for the generation of
both the class diagram and natural language
depicted in Fig.6 and Fig.7 respectively.

• The natural language extractor: this process
uses a set of rules describing the creation of
English statements in order to create simple
and meaningful statements out of the XML
schema.

Proceedings of the 6th WSEAS Int. Conf. on Software Engineering, Parallel and Distributed Systems, Corfu Island, Greece, February 16-19, 2007 156

Fig.2. The Model data flow diagram illustrating the model operation modes

The hotel consists of a number of rooms.
Every room has a number and a status.

Fig.3. Sample natural language requirements

<?xml version="1.0" encoding="UTF-8"?>
<paragraph>
 <Token category="DT">The</Token>
 <Token category="NN" POS="s">hotel</Token>
 <Token category="VBZ" POS="v">consists</Token>
 <Token category="IN">of</Token>
 <Token category="DT">a</Token>
 <Token category="NN" POS="obj">number</Token>
 <Token category="IN">of</Token>
 <Token category="NNS">rooms</Token>
 <Token category=".">.</Token>
 <Token category="DT">Every</Token>
 <Token category="NN" POS="s">room</Token>
 <Token category="VBZ" POS="v">has</Token>
 <Token category="DT">a</Token>
 <Token category="NN" POS="obj">number</Token>
 <Token category="CC" Conn="noun">and</Token>
 <Token category="DT">a</Token>
 <Token category="NN">status</Token>
 <Token category=".">.</Token>
</paragraph>

Fig.4. XML representation for the requirements
in Fig.3.

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">
 <xs:complexType name="hotel">
 <xs:annotation>
 <xs:documentation>0, 0</xs:documentation>
 </xs:annotation>
 <xs:attribute name="of number of rooms">
 <xs:annotation>
 <xs:documentation>2, 2</xs:documentation>
 </xs:annotation>
 </xs:attribute>
 </xs:complexType>
 <xs:element name="hotel" type="hotel">
 <xs:annotation>
 <xs:documentation>0, 0</xs:documentation>
 </xs:annotation>
 </xs:element>
 <xs:complexType name="room">
 <xs:annotation>
 <xs:documentation>4, 4</xs:documentation>
 </xs:annotation>
 <xs:attribute name="number">
 <xs:annotation>
 <xs:documentation>6, 6</xs:documentation>
 </xs:annotation>
 </xs:attribute>
 <xs:attribute name="status">
 <xs:annotation>
 <xs:documentation>8, 8</xs:documentation>
 </xs:annotation>
 </xs:attribute>
 </xs:complexType>
 <xs:element name="room" type="room">
 <xs:annotation>
 <xs:documentation>4, 4</xs:documentation>
 </xs:annotation>
 </xs:element>
</xs:schema>

Fig.5. XML schema generated for requirements

Proceedings of the 6th WSEAS Int. Conf. on Software Engineering, Parallel and Distributed Systems, Corfu Island, Greece, February 16-19, 2007 157

In our model, we used the MIMB tool [8] to
transform the XML schema into a UML class
diagram and vice versa. We also used the GATE
tool [4] as our NLP infrastructure.

4 Running the Experiments
In order to test the performance of our model, we
collected a test bed of specification documents: Our
test bed is divided into two sets. The first set of
documents namely: the dinning philosopher
specifications document [9], the bank system
specifications document [6] and the elevator
specifications document [11] were collected from
different academic researches where each of the
documents has been used to conduct a research
similar to our work. The second set of requirement
documents was collected from Computer
Information Systems (CIS) students in a Software
Engineering (SE) course at the University of Jordan.

We classified the specification documents in our test
bed into categories depending on their language
characteristics. The main factor in the classification
was the structure of the sentences used: if a sentence
was atomic with one subject and one verb then it is
considered as a simple sentence. Accordingly, the
specification document which is formed of simple
sentences is classified as a simple one. On the other
hand, if a sentence contained more than one subject
and multiple verbs then it is considered as an
intermediate sentence. Accordingly, the
specification document which is composed of
intermediate sentences is classified as intermediate.
Whereas, sentences with more than one subject and
multiple verbs are complex and documents
composed of them are classified as complex as well.
Table 1 and Table II illustrate our classification for
each of the specification documents in our test bed.
Our classification process is preformed manually
however in future works we plan to automate this
process.
In our experiments, each of the documents in the
first test bed was inputted into our model without
any modifications in order to be able to compare our
results with the results obtained in the previous
works [9], [6], and [11]. For each document of this
set we generated a class diagram view and a natural
language view. Afterward, we analyze the gap
between the inputted natural language, the generated
class diagram and the generated natural language
view.
Our gap analysis was a two step procedure: first, we
regenerated the class diagram from the reversed
engineered natural language.

Fig.6. Class diagram view for requirements

in Fig.3

Each hotel has a number of rooms.
Each room has a number,
Each room has status.

Fig.7. Sample natural language requirements in
Fig.3

TABLE I

Test bed classification of specification
documents

Simple Intermediate Complex
Dinning
philosopher

Bank
system Elevator

TABLE II
Examples of specification documents collected

from students along with their classification
Simple Intermediate Complex
Hotel
reservation

School
system Book store

Therapy
center

Construction
system Supermarket

Then, we compared the class diagrams generated
from the originally given specifications and the
reversed synthesized one. The class diagram
generated for the synthesized specifications in Fig.7
was the same of that in Fig.6.
We further tested our model using the second set of
specifications documents in our test bed which we
collected previously from Computer Information
Systems (CIS) students in a Software Engineering
(SE) course at the University of Jordan. Knowing
that, those students are not English native speakers
and they lack the experience in writing specification
documents. The collected documents are
characterized by their lack of standardization and
their high ambiguity Table III shows sample of the
students specifications documents. Documents in
this set were tested first without any preprocessing,
and then they have been processed. The results of
the two were compared. The preprocessed versions
of the given specification documents were
automatically generated by our model. The
modification was added to class diagrams and our
model was used to reverse the updated class
diagrams into natural language requirement.

Proceedings of the 6th WSEAS Int. Conf. on Software Engineering, Parallel and Distributed Systems, Corfu Island, Greece, February 16-19, 2007 158

5 Results and Explanations
After running the experiments, by analyzing the
output and comparing our results with previous
work results, we concluded the following:

• In terms of accuracy our model achieved
higher percentage for identifying objects as
well as attributes than previous researches.
Our model was capable of achieving this
level of accuracy because it analyzed every
token in the specification document. This is
rationalized by the fact that every word
listed in the specifications document should
carry significant information related to the
problem description or it should not be
present in the document. Therefore, every
token should be analyzed and processed.

• In terms of natural language generation
capability, our model was capable of
generating a natural language view from the
generated class diagram view. Whereas, this
feature is not available in any of the
previously conducted researches.

• In terms of gap analyses there was no
significant difference between the class
diagrams generated in the forward direction
from the ones generated in the backward
direction. This enables the requirements
engineer to use our model to maintain
requirements automatically.

• In terms of language quality, our results
showed that preprocessing requirements in
the sense that poorly structured
requirements are converted to highly
structured ones resulted in more accurate
and complete output from the model.

Our model identifies relations if they were
expressed using a constrained language set.
However, none of the inputted specifications had
that feature and thus our model was not able to
identify relations. Table III summarize the results
of testing the scientific test bed along with a
comparison between our results and previous
researches works. However, Table IV summarizes
results for a sample of the students test bed.

6 Conclusions and Future Works
The advantages of automating requirements
engineering are emphasized in our work. The results
we obtained after testing our model highlighted the
problems that face software engineers in processing
natural language specifications documents. The

results express the power of our model to tackle
these problems.

TABLE III
Comparing results of academic set

Experiment
name

Comparison criteria Our
model

Previous
work

Modeling

 No. of objects
identified 3 2

No. of
attributes
identified

4 2

No. of relations
identified 0 1

Overall modeling accuracy

 In term of
objects More Less

 In term of
attributes More Less

Dinning
Philosopher

Spec.
Document

 In term of
relations Less More

Modeling

 No. of objects
identified 8 3

No. of
attributes
identified 29 11
No. of relations
identified 0 0

Overall modeling accuracy

 In term of
objects More Less

 In term of
attributes More Less

Bank
System
Spec.

Document

 In term of
relations Same Same

Modeling
No. of objects
identified 1 1
No. of
attributes
identified 12 4
No. of relations
identified 0 0

Overall modeling accuracy
In term of
objects Same Same
In term of
attributes More Less

Elevator
Spec.

Document

In term of
relations Same Same

Our works also highlighted how our automated
model reduces the time, the efforts as well as the
experience needed to model and maintain those
documents.
In fact, our model can also serve as a tool for
maintaining specifications documents where updates
on specifications can be propagated to class
diagrams in the forward direction and updates to
class diagram can be propagated to natural language
in the backward direction.
Majority of the future improvements anticipated in
our work are in favor of an overall enhancement
from a model into a fully functional system that uses
semantics and domain knowledge in order to

Proceedings of the 6th WSEAS Int. Conf. on Software Engineering, Parallel and Distributed Systems, Corfu Island, Greece, February 16-19, 2007 159

analyze specifications documents. We are planning
to build our own parser for natural language text and
to expand our model to work with other languages.
In addition we will automate the manual process of
classifying specifications documents.

TABLE IV
Comparing results of a sample of student set,

with and without preprocessing
Experiment
Name

Without
preprocessing

With
preprocessing

Hotel
reservation

Requirements
of good quality
all objects and
attributes
identified.

Requirements
of good quality
all objects and
attributes
identified.

Therapy
center

Requirements
of good quality
all objects and
attributes
identified.

Requirements
of good quality
all objects and
attributes
identified.

School
system

Requirements
of poor quality
not all objects
and attributes
were
identified.

Requirements
of good quality
all objects and
attributes
identified.

Construction
system

Requirements
of poor quality
not all objects
and attributes
were
identified.

Requirements
of good quality
all objects and
attributes
identified..

Book store Requirements
of poor quality
not all objects
and attributes
were
identified.

Requirements
of good quality
all objects and
attributes
identified.

Supermarket
system

Requirements
of poor quality
not all objects
and attributes
were
identified.

Requirements
of good quality
all objects and
attributes
identified.

References:
[1] V. Ambriola, V. Gervasi, Environmental

Support for Requirements Writing and Analysis.
Information Science and Technology Institute,
Technical Report, Pisa, Italy, 1999.

[2] A. AMESCUA, J. GARCÍA, M. SÁNCHEZ-
SEGURA, and F. MEDINA-DOMÍNGUEZ,"
Software Process Improvement for Practitioners
Based on Knowledge Management Tools",
Proceedings of the 5th WSEAS Int. Conf. on
Software Engineering, Parallel and Distributed
Systems, Madrid, Spain, 2006, pp 24-29.

[3] J. Barnett, K. Knight, I. Mani, and E. Rich,

"Knowledge and natural language processing",
Communications of the ACM, vol. 33, no. 8, pp.
50-71, 1990.

[4] H. Cunningham, D. Maynard, K. Bontcheva, V.
Tablan, C. Ursu, M. Dimitrov, M. Dowman, N.
Aswani, and I. Roberts, Developing Language
Processing Components with GATE, University
of Sheffield, 2005.

[5] D. Duffy, C. Macnish, J. Mcdermid, and P.
Morris, A Model for Requirements Analysis
Using Automated Reasoning. Proceedings of the
7th International Conference on Advanced
Information Systems Engineering, Lecture Notes
In Computer Science, vol. 932, 68-81. 1995.

[6] B. S. Lee, Automated conversion from a
requirements document to an executable formal
specification. Automated Software Engineering,
2001. Proceedings. 16th Annual International
Conference, 437, 2001.

[7] B. Lee, and B. Bryant, "Applying XML
technology for implementation of natural
language specifications", International Journal of
Computer Systems Science & Engineering, vol.
18, no. 5, 2003, pp. 279-300.

[8] Meta Integration Technology, Inc., (2006).
Reference Guide. Available:
http://www.metaintegration.net/Products/MIMB

[9] H. G. Perez-Gonzalez. Automatically
Generating Object Models from Natural
language Analysis. Companion of the 17th
annual ACM SIGPLAN conference on Object-
oriented programming, systems, languages, and
applications, 86-87, 2002.

[10] M. A. Hennell. Requirements, Specification
and Testing. Software Reliability Achievement
and Assessment, Edited by B. Littlewood.
Blackwell Scientific Publication. 1987.

 [11] M. Saeki, H. Horai, and H. Enomoto,
"Software development process from natural
language specification", Proceedings of the 11th
international conference on Software
engineering, pp. 64-73,1989.

 [12] I. Sommerville, Software Engineering, 8th
edition, Addison Wesley, 2006.

 [13] K. E. Wiegers, Software Requirements, 2nd
edition, Microsoft Press, 2003.

[14] W. M. Wilson, L. H. Rosenberg and L. E.
Hyatt, "Automated analysis requirement
specification", Proceedings of the 19th
international conference on Software
engineering, International Conference on
Software Engineering, pp. 161-171,1997.

Proceedings of the 6th WSEAS Int. Conf. on Software Engineering, Parallel and Distributed Systems, Corfu Island, Greece, February 16-19, 2007 160

http://www.metaintegration.net/Products/MIMB

