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Abstract: - In this paper we propose a new modeling technique for LTI multivariable systems using the generalized 
Orthonormal basis functions with ordinary poles. Once the model structure is built we proceed to update the 
membership set of the resulting model parameters through the execution of unknown but bounded error identification 
algorithms. This updating aims to synthesize a robust control strategy.   
 
Key-Words: -Modeling, Multivariable systems, Parameter estimation, Generalized Orthonormal Basis Functions, 
UBBE.  
 
1   Introduction 
The generalized Orthonormal basis functions [1], [2], 
[3], [4] regroup the common FIR, Laguerre and Kautz 
bases [5], [6] which are special cases of this complete 
construction. Consequently all type of linear, causal and 
stable systems can be represented by the generalized 
Orthonormal basis functions. 
     Modeling of MIMO (Multi-Input Multi-Output) 
linear systems using the generalized Orthonormal bases 
filters supposes in [7], [8], [9] that the poles of these 
bases are fixed which limited their performances. In this 
paper we surmounted these difficulties by the use of 
generalized Orthonormal basis functions with ordinary 
poles. A new simplified formulation of the state space 
representation of these bases has been elaborated which 
permits the modeling of linear MIMO systems and the 
problem of parameter estimation is solved by this new 
modeling approach. We also notice that the optimal 
poles of these bases are estimated by a nonlinear 
optimization method. 
     In contrast to the classic identification approach that 
leads to the determination of a vector of parameters and 
when no statistical information on the noise is available 
at the exception is bounded and of known boundary, the 
UBBE (unknown but bounded error) approach can be 
used. With this hypothesis the coefficients set of the 
linear combination is called the parameter uncertainty 
domain. It is often considered under a convex polytope 
which can be delimited by the induction of its vertices, 
its arrests or its faces. This set is compatible with the 
measures, the model structure and the error bounds. 
Because of the complexity of the convex polytope, some 
authors searched to approach this form in a recursive 

way, either by simpler geometric form as an ellipsoid 
[10], an orthotope [11], a parallelotope [12] or a limited 
complexity polytope [13]. It is necessary to notice that 
the region can be empty in the case where the bounded 
error or the initial region, were badly selected. 
     This paper is organized as follows: In the second 
paragraph the problem formulation of the new state 
space representation of the generalized Orthonormal 
basis functions and the block diagram of MIMO linear 
systems represented on these bases are presented. The 
third paragraph presents the new modeling approach of 
MIMO systems. A preview concept of the UBBE 
approach is given in the fourth paragraph. The fifth 
paragraph summarizes some simulation results and 
finally a conclusion is given in the last paragraph. 
 
 
2   Problem formulation 
We consider a MIMO linear system with r input 
sequences { })(,),(),( 21 kukuku r"  and m output 
sequences { })(,),(),( 21 kykyky m"  described by its 
transfer matrix  of dimension . )( 1−qG )( rm×

Each elementary transfer function  
(i=1,2,…,m ; j=1,2,…,r) can be decomposed on the 
generalized Orthonormal bases filters as follows : 
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{ }ji
ng , , ji,ξ  and  are respectively the set of the 

Fourier coefficients, the poles vector and the truncating 
order of the network (i,j). 
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basis functions given in [1] and defined by: 
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where: 
 

ji
k
,ξ and its conjugated ji

k
,ξ are the poles of the filter k. 

 
The block diagram of the figure 1 shows the network 
(i,j) of the generalized Orthonormal base filters. 
 

 
Fig.1: Network (i,j) of the generalized orthonormal base 

filters 
 
The network (i,j) of the generalized Orthonormal bases 
filters can be described by a state space representation 
which is reformulated in a simplified version and 
rewritten in matrix form as follows: 
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with: 
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jiB ,  and ji,θ  are vectors of dimensions )1( , jiN+ : 
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According to (1) and (3), the MIMO linear system can 
be decomposed on the generalized Orthonormal bases 
filters as shown in figure 2: 
 

 
Fig.2: Network of the generalized Orthonormal bases 

filters for a MIMO system 
 
 

3   Modeling of MIMO systems 
To model the MIMO linear system represented on the 
generalized Orthonormal basis functions, we use the 
block diagram of the figure 2. We determine the state 
space representation of a MISO system and we deduce 
the MIMO representation. 
According to the figure 2, we can write: 
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Let’s define the following state vector:  
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By using (3), (11) and (12), the state space 
representation of a MISO system can be written as: 
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with: 
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where: 
 

jijiji BA ,,,  and , , θ  are defined in (6), (8), and (9). 
 

By using (12) and (14), we define the following state 
vector: 
 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

)(
    

)(
)(

)( 2

1

kX

kX
kX

kX

m

#
           (21) 

 

∑∑
= =

+=
m

i

r

j
jiNkX

1 1
, )1()(dim           (22) 

 
The state space representation of a MIMO system can 
then be written as: 
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The matrixes A, B, and Θ are given by: 
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where: 
 

iii BA Θ and , ,  are defined in (15), (17), and (19). 
 
We deduce from (28), (29) and figure 2 that the 
identification problem of the MIMO linear system can 
divide in several identification problems of MISO 
(Multi-Input Single-Output) subsystems. Therefore, we 
interest in the follow paragraph to the identification of a 
MISO subsystem represented on the generalized 
Orthonormal basis functions. 
 
 
4   Concept of UBBE approach  
We consider the bounded error in (11). The model 
output of a MISO subsystem can be written: 
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)(  and  kX ii Θ  are defined respectively in (12) and (19). 
where  is the modeling error summarizing the 
approximation infinite serial of the general Orthonormal 
base by a finite serial and the additional measure noise. 
This error is assumed to be unknown but bounded and of 
known boundary. For a reason of simplicity the born 
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is chosen symmetric. 
We proceed to the identification of the vector  by 
determining the parameter uncertainty region of the 
general Orthonormal basis functions. 

iΘ̂

From (30) we can write: 
 

iiiiii kykXky δδ +≤Θ≤− )()()(          (31) 
 
The inequalities (31) generate at each time instant k tow 
hyperplanes  in the parameters space of 
the vector . These two hyperplanes are normal to the 
state vector  and defined by: 

21   and  kk HH

iΘ
)(kX i

 
{ }
{ }iiiiik

iiiiik

kykXH
kykXH

δ
δ

−=ΘΘ=
+=ΘΘ=

)()(
)()(

2

1          (32) 

 
Each hyperplane  generates a negative half 
space and a positive half space. The vector 

)2,1( =jHkj

iΘ  of 
parameters satisfying the double inequality (31) belongs 
to the domain defined by the intersection of the positive 
half closed spaces . ++

21   and kk HH
The membership set of the vector , obtained 
following the acquirement of L measures, must therefore 
satisfy all the constraints associated to these measures, 
either: 
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In this way UBBE approach consists to determine at 
each instant k the smallest set of parameters  
consistent with the measurements, the model structure 
and the error bounds. This set is a convex polytope.  

n
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5   Simulation Results 
To illustrate the utility of the new modeling approach, 
we consider a MIMO linear system with two input 
sequences and two output sequences with transfer matrix 
representation given by: 
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The input signals are uniformly distributed sequences 
and the model errors assumed to be bounded with 
bounds 1 3.75δ =  and 2 4.76δ = . The truncating orders 
and the optimal poles for MISO subsystems yielded the 
following results: 
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[ ]2 -0.715 0  0.695  -0.225 T
optξ =  

 
We proceed to estimate the uncertainty region of 
parameters from observable sequences of data (figure 3).  
 

 
Fig.3: Input-Output signals of the system 

 
The performances to evaluate concern either the 
uncertainty region or the updating algorithm 
performances. The former is determined by the final 
volume (FV) or the uncertainty intervals and its center. 
The latter are defined by the convergence time (CT), the 
updating rate (UR) and the mean computing time 
(MCT). The following tables summarize the 
performances of uncertainty regions of parameters and 
the updating algorithm for a signal to noise ratio 
SNR=10. We limit only to present the simulation results 
for the ellipsoidal approach.  
 

Table1: Performances of the method 
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Table 2: Region centers and Uncertainty intervals 

 
 
We notice that the ellipsoid center is considered as the 
best valuator of the parameter vector. To validate this 
new modeling approach, we trace in figures 4 and 5 the 
model and estimated outputs valued by the ellipsoid 
centers. 
 

 
Fig.4: model and estimated outputs of the fist subsystem 

 

 
Fig.5: model and estimated outputs of the second 

subsystem 
 
 

6   Conclusion  
This paper has presented a new modeling approach of 
MIMO linear systems represented on the generalized 
Orthonormal basis functions with ordinary poles. The 
parameter uncertainty domain has been provided using 
the UBBE approach. So that it enables to synthesize a 
robust predictive control.  
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