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Abstract: - In moving objects information management, Motion state model (MSM) is based on sample method 
and suits to most applications. Because of its characters, 2n index tree is proposed to organize the motion data. In 
order to increase the efficiency of indexing, some issues such as late updating of leaf node splitting and merging, 
pre-query before the query of objects relation and the reference of motion vectors in index tree are carefully 
studied. Comparing to other indexing method, 2n index tree works better with MSM. 
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1   Introduction 
Wireless communication makes it possible to collect 
the states of moving objects in real time, thus make it 
possible to store, retrieve, replay and forecast their 
dynamic states of position, speed, orientation, etc. 
Moving objects have temporal attributes as well as 
spatial attributes. Either temporal or spatial attribute 
is dramatic in its information management. When 
these two kinds of attribute are both within the 
domain of study, things are getting more complicated. 
Suppose a car equipped with GPS, which data are 
transmitted through GPRS or CDMA network, how 
do we manage these spatiotemporal information? 

For a single moving object, the motion 
information is relatively simple to organize even 
though careful study has to be given to both its spatial 
and temporal attributes. When there are lots of 
moving objects and the motion information is of long 
periods, things get much more complicated, because 
the quantity of motion data is rather large. To 
organize a large quantity of data is a good subject to 
study itself, let alone the data is both spatial and 
temporal. 

In a data center dealing with the motion 
information of moving objects, such as Intelligent 
Transport System (ITS), digital battle field, Mobile 
e-Commerce center, etc., it is necessary to respond 
quickly to the queries of certain moving objects at 

certain area in certain period of time with certain 
condition. This naturally asks for an efficient index to 
all the motion data of all the moving objects for all 
periods of time. 
 
 
2   Related Works 
Besides the common indexing method, there are 
some studies especially for spatial indexing and/or 
temporal indexing. 
 
 
2.1 Spatial Indexing 
Spatial indexing method is always an important 
subject in geographic information system (GIS) 
study. Some efficient and common used spatial 
indices are Object-Area Index [1], Grid Index [1], 
QuadTree [2] and its expansion OctTree, R-Tree and 
its expansion R*-Tree/R+-Tree [1][3][4][5], 
k-d-Tree and k-d-B-Tree [6][7][8], SS-Tree and 
SR-Tree [9], Metric Tree and VP-Tree [10], M-Tree 
[11], etc. 
 
 
2.2 Temporal Indexing 
Many of the existing temporal indices are based on 
B-Tree or R-Tree. Some indices make use of hashing 
and other method. Some good algorithms include 

Proceedings of the 6th WSEAS Int. Conf. on Artificial Intelligence, Knowledge Engineering and Data Bases, Corfu Island, Greece, February 16-19, 2007      175



Interval B-Tree (IBT) [12], Multi-Version B-tree 
(MVB-tree) [13][14], Monotonic B+-Tree (MBT) 
[15], Time Split B-Tree (TSBT) [16], Time Index 
and Time Index+ [17][18][19], IP-Index [20] and 
IP*-Index [21], Append-Only Tree (AP Tree) [22], 
Segment R-Tree [23], Historical R-Tree (HR-tree) 
[24], SIQ [25], Snapshot Index [26][27], etc. 

 
 

2.3 Moving Objects Indexing  
Moving objects indexing is far more complicated. 
Besides space partitioning, which is widely used in 
spatial and temporal indexing, data partioning is also 
employed. Grid, hashing and tree structure are 
chosen for different data model.  

Hiroshi Nozawa introduces MT structure, ST 
structure, 3DT and AT structure for different data 
organization [28]. Hae Don Chon uses Space-Time 
Grid [29][30]. Trees, esp. R tree and its variances, are 
commonly used in moving objects indexing, such as 
PMR quadtree [31][32][33], 3D R-tree and 
Multi-Version 3D R-tree (MV3R-tree) [34], 
Trajectory-Bundle tree (TB-tree) and 
Spatial-Temporal R-tree (STR-tree) [35], 
Time-Parameterized R-tree (TPR-tree) and REXP tree 
[36][37], Q+R tree [38], etc. 

 
 

3   2n Tree Indexing 
Every moving object has its location and orientation, 
which must be in a certain space. So, moving objects 
indexing is closely related to spatial indexing. On the 
other hand, all the motion data, such as position, 
orientation, speed, acceleration, etc., of moving 
objects are changing with time. Hence, the 
organization of motion data must take temporal 
indexing into consideration. Furthermore, motion 
data management is subject to motion data 
representation, i.e. moving object model. It is model 
dependent.  

Motion State Model (MSM) [39] is based on 
sampling method. Comparing to other moving object 
models, MSM is able to be applied to 3D space while 
many models only deal with 2D space. Besides, 
MSM takes orientation of objects into model as well 
as position, while most other models can only 
manage objects’ position. Therefore, MSM is chosen 
for moving object model, based on which 2n index 
tree is studied. 

As described by MSM, the motion state of a 
moving object can be represented by a vector with 
infinite elements as 

(t, x, x’, x”, …, x(n), …,  
y, y’, y”, …, y(n), …,  

z, z’, z”, …, z(n), …,  
φ, φ’, φ”, …, φ(n), …,  
ω, ω’, ω”, …, ω(n), …,  
κ, κ’, κ”, …, κ(n), …) 
in which (x, y, z) is the position and (φ, ω, κ) is the 

orientation of the moving object. And (x’, y’, z’) is 
the moving speed while (φ’, ω’, κ’) is the rotating 
speed. Similarly (x”, y”, z”) is the moving 
acceleration and (φ”, ω”, κ”) is the rotating 
acceleration, etc. In fact, in any application the 
motion state vector has limited elements, in which 
only part of them are needed to be indexed, which can 
be noted as indexed vector c(c0, c1, c2, …, cn-1) (c0 is 
time stamp). 

 
 

3.1 2n Index Tree  
c(c0, c1, c2, …, cn-1) can be considered as a point in 

Rn. It is always possible to find a range [ri, min, ri, max) 
and let all ci∈[ri, min, ri, max). A hyperrectangular S in 
space Rn can be found as boundary of the domain of 
the indexed vector c. The range of S in dimemsion i is 
[ri, min, ri, max). By making S as the root node and 
continuously dividing in the middle of each 
dimension, a 2n tree structure can be established. The 
first division in each dimension of root node divides 
the root node into 2n congruent small 
hyperrectangulars, which form the level one nodes 
and can be numbered as 

1kS (k1=0, 1, 2, ..., 2n-1). The 
following divisions of nodes level one makes nodes 
level two, which can be numbered as 

1 2k kS ( k1,  k2=0, 
1, 2, ..., 2n-1), and so on so forth. 

From the root node, each parent node contains 
pointers to its child nodes, each child node contain a 
pointer to its parent node. So that it is easy to navigate 
between different nodes. Of course, root node has no 
parent pointer and leaf nodes have no child pointers. 

Because the motion of moving object is not 
necessarily uniform, the distribution of indexed 
vector is not even in S. Therefore, some blank nodes 
exist, which need not to be recorded. And the relative 
pointer in its parent node is not necessary. 

The leaf nodes of index tree contain the motion 
state vectors. There are two ways to include the 
motion state vectors into leaf nodes, one is to record 
the vectors themselves, another one is to record the 
references to thoes vectors. 

It is not difficult to write out the operation 
algorithm of 2n index tree, such as establishing index 
tree, locating, adding and deleting motion state vector, 
etc. However, some issues are worth discussing. 
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3.2   Late Updating  
Every time when a new motion state vector is added 
into the index tree, the leaf node which contains that 
vector should be checked. If the number of vectors it 
contains is more than the maximum number qmax, it 
should be split. Similarly, when a vector is deleted, 
the leaf node that contains the vector and its siblings 
should be check. If the node contains vectors less 
than the minimum number qmin, and the number of 
vectors in its parent node is less than qmax, it should be 
merged. But this checking process needs time. 
Especially when the system is busy in recording the 
vectors from large amount of moving objects, it is 
inefficient to check the node every time when a new 
vector is added. Sometimes then adding and deleting 
happens in the same period of time, it will make the 
node split and merged repeatedly. So, it is necessary 
to perform late updating, i.e. to check the number of 
vectors contained in the leaf node periodically rather 
than to do it every time of adding and deleting. There 
are different policies to perform the checking.  
1. Check when system idles; 
2. Check when the number of added or deleted 

vectors reaches certain amount; 
3. Check in a certain period of time. 

No matter which policy will be taken, it is 
necessary to mark the leaf node whenever a adding or 
deleting operation happens, and clean the mark after 
checking the node. 

 
 

3.3   Pre-query  
It is very easy to find a moving object satisfying 
certain condition with the help of 2n index tree. But 
things get complicated if query relates to two or more 
moving objects, for example, to find out the moving 
objects pair whose distance between each other is 
less than certain amount. Such relationship query is 
time-consuming. But if a pre-query process can be 
taken, the query time will be much less. 

The original idea of pre-query is to filter out the 
objects that are obviously not in the result set. This 
will help to reduce the calculation. For example, if 
“the closest distance” between objects in a period of 
time and the relative moving objects are queried, the 
filter process can be as follows, 
a) Find out all the satisfied leaf nodes; 
b) For each leaf node, if there is more than one 

vector within it, then all the vectors are chosen. 
Calculate the filter distance dFilter as the shortest 
leaf node diagonal in position dimensions plus 
the longest distance that a moving object can 
move in the period cover by that leaf node. That 
is, 

, maxmin( )Filter PositionDiagonal i id d t speed= + Δ ×  
in which, dPositionDiagonal, i is the diagonal of leaf 
node i in position dimensions, Δti is the period 
covered by leaf node i. 

c) If there is no leaf node which contains more than 
one vector, then the filter distance dFilter is, 

, , maxmin( max( , ) )Filter PositionMax i j i jd d t t speed= + Δ Δ ×  
in which, dPositionMax, i, j is the longest distance 
between leaf node i and leaf node j in position 
dimensions, Δti is the period covered by leaf 
node i, and Δtj is the period covered by leaf node 
j. 

d) For every leaf node k, calculate the shortest 
compare distance dMin, k with other leaf nodes,  

, , , maxmin( max( , ) )Min k PositionMin k h h kd d t t Speed= − Δ Δ ×  
in which, dPositionMin, k, h is the shortest distance 
between leaf node k and leaf node h in position 
dimensions, Δtk is the period covered by leaf 
node k, and Δth is the period covered by leaf 
node h. If dMin, k>dFilter, then leaf node k will be 
discarded.  

In program implementation, a table of leaf node 
can be made while finding satisfied leaf node in step 
1. Every time, when a new satisfied leaf node is 
found, the longest distance between this node and the 
nodes already in the table dPositionMax, i, j can be 
calculated and filled into the table, as well as the 
shortest distance dMin, k, and the longest distance that a 
moving object can move in the period cover by that 
leaf node. And every time when a new leaf node is 
added to the table, the latest filter distance dFilter can 
be updated. When all satisfied leaf nodes are found, 
dFilter is calculated out, and according to the table, 
unnecessary leaf node can be filtered. 

The longest and shortest distance between leaf 
nodes is based on the distance in different position 
dimension. According the splitting method of 2n 
index tree, there are four possible situations for two 

dmax 

dmin=0

dmax 

dmax dmax 

dmin=0 

dmin=0dmin 

(c) 

(a) (b) 

(d) 

Fig. 1: Longest and shortest distance calculation 
in projection on one dimension
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different nodes projected on one dimension as shown 
in Fig. 1. In this way, the longest distance du, max and 
shortest distance du, min in dimension u can be easily 
calculated. Thus, the longest and shortest distance 
between two nodes can be calculated as, 

2
,maxPositionMax u

u
d d= ∑  

2
,minPositionMin u

u

d d= ∑  

The effect of pre-query varies in different 
situations. When there are few moving objects, or the 
query has nothing to do with motion state, pre-query 
does not help much, in some cases, it even make the 
query time longer. But when there are lots of moving 
objects and the query is somewhat about the motion 
state, pre-query can heavily reduce the query time 
needed. Even so, however, the efficient of pre-query 
is also up to the distribution of motion vectors in 
index tree. The percentage of filtered moving objects 
is not fixed in all queries. Fig. 2 illustrates this clearly, 
it shows time needed for queries of the shortest 
distance with and without pre-query process within 
different numbers of moving objects.  

 
 

3.4   Motion Vector Reference in Index Tree  
Logically, the motion vectors are contained in the 
index tree. But in implementation, they can be stored 
into a table and be referenced by leaf node of index 
tree. To distinguish different motion vectors, time 
stamps in the vectors as well as the moving objects’ 
IDs are needed.  However, in any node of 2n index 
tree, the time period is specified. And the vectors 
falling into it must be within that period. If the time 

stamps in the vectors are recorded directly as part of 
the reference, it will bring redundancy.  

If the largest number of vectors of the same object 
within one leaf node is p, then only 2log p⎡ ⎤⎢ ⎥ bits is 
needed and enough to distinguish all the vectors with 
different time stamp. For the same object, the motion 
vectors in one leaf node can be numbered with 
unsigned integer according to their time sequence. 
This time number works together with object ID can 
distinguish all the motion vectors in one leaf node. 

For read and write efficiency, the time coding 
should be multiple of byte. On whether and how to 
use time coding in vector reference, both storage cost 
and read/write efficiency should be taken into 
consideration. For example, in MS Windows system, 
if time stamp is an instance of COleDateTime(), 
which uses 12 bytes, and in any leaf node, the vectors 
from the same object will not exceed 256, which can 
be represented by one byte, then the storage cost of 
index tree with time coding is less than 27% of that 
without time coding even when the number of 
moving objects reaches 16 million. This is very 
important when the index tree is loaded into memory 
when system works. It will reduce the memory space 
needed and reduce the page demand times. 

 
 

4   Compare 2n Tree Indexing with 
Other Indexing Methods 

There are lots of indexing methods introduced in 
section 2. Each method is good in this way or that, 
and fits for certain application. With motion state 
model, 2n tree indexing works well.  
 
 

Fig. 2: Query time with and without pre-query process 
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4.1   Compare with R-tree  
R-tree is popularly employed indexing, no matter in 
spatial indexing, temporal indexing or moving object 
indexing which is both spatial and temporal. Most 
studies of index based on R-tree are focused on 
moving trajectories, which are represented by linear 
function. This representation is simple, certain and 
unique, thus can be easily managed by least boundary 
box. On the contrary, MSM is based on motion state 
vector, which offers different LODs representation of 
motion state thus is uncertain and not unique, so that 
can not be managed by least boundary box. 

Some R-tree based indices also manage the state 
of moving objects. For example Q+R tree [38]. The 
state it manages is the last collected objects’ state or 
the current state. It does not show the motion process 
in a period of time. 

Besides, R-tree is very complicated with space 
partitioning, nodes overlay, etc. It is not as simple as 
2n tree in motion state vectors indexing. 

 
 

4.2 Compare with Spatial-Temporal Grid 
Spatial-temporal grid (STG) and 2n tree are both 
based on space partitioning. STG can be treated as a 
special kind of 2n tree, in which all leaf nodes have 
the same size and their splitting/merging operation 
happen at the same time. Locating motion vector in 
STG is simpler than that in 2n tree. The cell that the 
motion vector falls in can be directly calculated from 
the vector itself, thus need not searching from the 
root node like in 2n tree. 

The problem comes with storage. If every cell in 
STG is allocated with the same space, it may bring 
lots of waste of space when the vector distribution is 
not even. If each cell is allocated with different 
storage space as it needs, it loses the advantage of 
direct locating of victors. And the numbering of cells 
also makes it difficult for random access. 

 
 

4.3 Compare with Quadtree 
Obviously quadtree is not suitable for high dimension 
vectors. However, one of the solutions is to establish 
n-1 quadtrees for n-dimensional index vectors. This 
may help in some certain scenarios. But generally, it 
brings more storage cost and more query time. 
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