
Indexing Moving Objects Based on 2n Index Tree

HUANZHUO YE 1 a, HONGXIA LUO 2, KEZHEN SONG 1 b, HUALI XIANG 1 c, JING CHEN 3
1 Information School

Zhongnan University of Economics and Law
114, Wuluo Road, Wuhan, Hubei Province

P. R. CHINA

2 School of Geographical Sciences
Southwest University

2, Tiansheng Road, Beibei District, Chongqing
P. R. CHINA

3 State Key Laboratory of Information Engineering in Surveying and Mapping

Wuhan University
129, Luoyu Road, Wuhan, Hubei Province

P. R. CHINA

Abstract: - In moving objects information management, Motion state model (MSM) is based on sample method
and suits to most applications. Because of its characters, 2n index tree is proposed to organize the motion data. In
order to increase the efficiency of indexing, some issues such as late updating of leaf node splitting and merging,
pre-query before the query of objects relation and the reference of motion vectors in index tree are carefully
studied. Comparing to other indexing method, 2n index tree works better with MSM.

Key-Words: - Moving object, 2n tree, Motion state model, Index, Motion vector

1 Introduction
Wireless communication makes it possible to collect
the states of moving objects in real time, thus make it
possible to store, retrieve, replay and forecast their
dynamic states of position, speed, orientation, etc.
Moving objects have temporal attributes as well as
spatial attributes. Either temporal or spatial attribute
is dramatic in its information management. When
these two kinds of attribute are both within the
domain of study, things are getting more complicated.
Suppose a car equipped with GPS, which data are
transmitted through GPRS or CDMA network, how
do we manage these spatiotemporal information?

For a single moving object, the motion
information is relatively simple to organize even
though careful study has to be given to both its spatial
and temporal attributes. When there are lots of
moving objects and the motion information is of long
periods, things get much more complicated, because
the quantity of motion data is rather large. To
organize a large quantity of data is a good subject to
study itself, let alone the data is both spatial and
temporal.

In a data center dealing with the motion
information of moving objects, such as Intelligent
Transport System (ITS), digital battle field, Mobile
e-Commerce center, etc., it is necessary to respond
quickly to the queries of certain moving objects at

certain area in certain period of time with certain
condition. This naturally asks for an efficient index to
all the motion data of all the moving objects for all
periods of time.

2 Related Works
Besides the common indexing method, there are
some studies especially for spatial indexing and/or
temporal indexing.

2.1 Spatial Indexing
Spatial indexing method is always an important
subject in geographic information system (GIS)
study. Some efficient and common used spatial
indices are Object-Area Index [1], Grid Index [1],
QuadTree [2] and its expansion OctTree, R-Tree and
its expansion R*-Tree/R+-Tree [1][3][4][5],
k-d-Tree and k-d-B-Tree [6][7][8], SS-Tree and
SR-Tree [9], Metric Tree and VP-Tree [10], M-Tree
[11], etc.

2.2 Temporal Indexing
Many of the existing temporal indices are based on
B-Tree or R-Tree. Some indices make use of hashing
and other method. Some good algorithms include

Proceedings of the 6th WSEAS Int. Conf. on Artificial Intelligence, Knowledge Engineering and Data Bases, Corfu Island, Greece, February 16-19, 2007 175

Interval B-Tree (IBT) [12], Multi-Version B-tree
(MVB-tree) [13][14], Monotonic B+-Tree (MBT)
[15], Time Split B-Tree (TSBT) [16], Time Index
and Time Index+ [17][18][19], IP-Index [20] and
IP*-Index [21], Append-Only Tree (AP Tree) [22],
Segment R-Tree [23], Historical R-Tree (HR-tree)
[24], SIQ [25], Snapshot Index [26][27], etc.

2.3 Moving Objects Indexing
Moving objects indexing is far more complicated.
Besides space partitioning, which is widely used in
spatial and temporal indexing, data partioning is also
employed. Grid, hashing and tree structure are
chosen for different data model.

Hiroshi Nozawa introduces MT structure, ST
structure, 3DT and AT structure for different data
organization [28]. Hae Don Chon uses Space-Time
Grid [29][30]. Trees, esp. R tree and its variances, are
commonly used in moving objects indexing, such as
PMR quadtree [31][32][33], 3D R-tree and
Multi-Version 3D R-tree (MV3R-tree) [34],
Trajectory-Bundle tree (TB-tree) and
Spatial-Temporal R-tree (STR-tree) [35],
Time-Parameterized R-tree (TPR-tree) and REXP tree
[36][37], Q+R tree [38], etc.

3 2n Tree Indexing
Every moving object has its location and orientation,
which must be in a certain space. So, moving objects
indexing is closely related to spatial indexing. On the
other hand, all the motion data, such as position,
orientation, speed, acceleration, etc., of moving
objects are changing with time. Hence, the
organization of motion data must take temporal
indexing into consideration. Furthermore, motion
data management is subject to motion data
representation, i.e. moving object model. It is model
dependent.

Motion State Model (MSM) [39] is based on
sampling method. Comparing to other moving object
models, MSM is able to be applied to 3D space while
many models only deal with 2D space. Besides,
MSM takes orientation of objects into model as well
as position, while most other models can only
manage objects’ position. Therefore, MSM is chosen
for moving object model, based on which 2n index
tree is studied.

As described by MSM, the motion state of a
moving object can be represented by a vector with
infinite elements as

(t, x, x’, x”, …, x(n), …,
y, y’, y”, …, y(n), …,

z, z’, z”, …, z(n), …,
φ, φ’, φ”, …, φ(n), …,
ω, ω’, ω”, …, ω(n), …,
κ, κ’, κ”, …, κ(n), …)
in which (x, y, z) is the position and (φ, ω, κ) is the

orientation of the moving object. And (x’, y’, z’) is
the moving speed while (φ’, ω’, κ’) is the rotating
speed. Similarly (x”, y”, z”) is the moving
acceleration and (φ”, ω”, κ”) is the rotating
acceleration, etc. In fact, in any application the
motion state vector has limited elements, in which
only part of them are needed to be indexed, which can
be noted as indexed vector c(c0, c1, c2, …, cn-1) (c0 is
time stamp).

3.1 2n Index Tree
c(c0, c1, c2, …, cn-1) can be considered as a point in

Rn. It is always possible to find a range [ri, min, ri, max)
and let all ci∈[ri, min, ri, max). A hyperrectangular S in
space Rn can be found as boundary of the domain of
the indexed vector c. The range of S in dimemsion i is
[ri, min, ri, max). By making S as the root node and
continuously dividing in the middle of each
dimension, a 2n tree structure can be established. The
first division in each dimension of root node divides
the root node into 2n congruent small
hyperrectangulars, which form the level one nodes
and can be numbered as

1kS (k1=0, 1, 2, ..., 2n-1). The
following divisions of nodes level one makes nodes
level two, which can be numbered as

1 2k kS (k1, k2=0,
1, 2, ..., 2n-1), and so on so forth.

From the root node, each parent node contains
pointers to its child nodes, each child node contain a
pointer to its parent node. So that it is easy to navigate
between different nodes. Of course, root node has no
parent pointer and leaf nodes have no child pointers.

Because the motion of moving object is not
necessarily uniform, the distribution of indexed
vector is not even in S. Therefore, some blank nodes
exist, which need not to be recorded. And the relative
pointer in its parent node is not necessary.

The leaf nodes of index tree contain the motion
state vectors. There are two ways to include the
motion state vectors into leaf nodes, one is to record
the vectors themselves, another one is to record the
references to thoes vectors.

It is not difficult to write out the operation
algorithm of 2n index tree, such as establishing index
tree, locating, adding and deleting motion state vector,
etc. However, some issues are worth discussing.

Proceedings of the 6th WSEAS Int. Conf. on Artificial Intelligence, Knowledge Engineering and Data Bases, Corfu Island, Greece, February 16-19, 2007 176

3.2 Late Updating
Every time when a new motion state vector is added
into the index tree, the leaf node which contains that
vector should be checked. If the number of vectors it
contains is more than the maximum number qmax, it
should be split. Similarly, when a vector is deleted,
the leaf node that contains the vector and its siblings
should be check. If the node contains vectors less
than the minimum number qmin, and the number of
vectors in its parent node is less than qmax, it should be
merged. But this checking process needs time.
Especially when the system is busy in recording the
vectors from large amount of moving objects, it is
inefficient to check the node every time when a new
vector is added. Sometimes then adding and deleting
happens in the same period of time, it will make the
node split and merged repeatedly. So, it is necessary
to perform late updating, i.e. to check the number of
vectors contained in the leaf node periodically rather
than to do it every time of adding and deleting. There
are different policies to perform the checking.
1. Check when system idles;
2. Check when the number of added or deleted

vectors reaches certain amount;
3. Check in a certain period of time.

No matter which policy will be taken, it is
necessary to mark the leaf node whenever a adding or
deleting operation happens, and clean the mark after
checking the node.

3.3 Pre-query
It is very easy to find a moving object satisfying
certain condition with the help of 2n index tree. But
things get complicated if query relates to two or more
moving objects, for example, to find out the moving
objects pair whose distance between each other is
less than certain amount. Such relationship query is
time-consuming. But if a pre-query process can be
taken, the query time will be much less.

The original idea of pre-query is to filter out the
objects that are obviously not in the result set. This
will help to reduce the calculation. For example, if
“the closest distance” between objects in a period of
time and the relative moving objects are queried, the
filter process can be as follows,
a) Find out all the satisfied leaf nodes;
b) For each leaf node, if there is more than one

vector within it, then all the vectors are chosen.
Calculate the filter distance dFilter as the shortest
leaf node diagonal in position dimensions plus
the longest distance that a moving object can
move in the period cover by that leaf node. That
is,

, maxmin()Filter PositionDiagonal i id d t speed= + Δ ×
in which, dPositionDiagonal, i is the diagonal of leaf
node i in position dimensions, Δti is the period
covered by leaf node i.

c) If there is no leaf node which contains more than
one vector, then the filter distance dFilter is,

, , maxmin(max(,))Filter PositionMax i j i jd d t t speed= + Δ Δ ×
in which, dPositionMax, i, j is the longest distance
between leaf node i and leaf node j in position
dimensions, Δti is the period covered by leaf
node i, and Δtj is the period covered by leaf node
j.

d) For every leaf node k, calculate the shortest
compare distance dMin, k with other leaf nodes,

, , , maxmin(max(,))Min k PositionMin k h h kd d t t Speed= − Δ Δ ×
in which, dPositionMin, k, h is the shortest distance
between leaf node k and leaf node h in position
dimensions, Δtk is the period covered by leaf
node k, and Δth is the period covered by leaf
node h. If dMin, k>dFilter, then leaf node k will be
discarded.

In program implementation, a table of leaf node
can be made while finding satisfied leaf node in step
1. Every time, when a new satisfied leaf node is
found, the longest distance between this node and the
nodes already in the table dPositionMax, i, j can be
calculated and filled into the table, as well as the
shortest distance dMin, k, and the longest distance that a
moving object can move in the period cover by that
leaf node. And every time when a new leaf node is
added to the table, the latest filter distance dFilter can
be updated. When all satisfied leaf nodes are found,
dFilter is calculated out, and according to the table,
unnecessary leaf node can be filtered.

The longest and shortest distance between leaf
nodes is based on the distance in different position
dimension. According the splitting method of 2n
index tree, there are four possible situations for two

dmax

dmin=0

dmax

dmax dmax

dmin=0

dmin=0dmin

(c)

(a) (b)

(d)

Fig. 1: Longest and shortest distance calculation
in projection on one dimension

Proceedings of the 6th WSEAS Int. Conf. on Artificial Intelligence, Knowledge Engineering and Data Bases, Corfu Island, Greece, February 16-19, 2007 177

different nodes projected on one dimension as shown
in Fig. 1. In this way, the longest distance du, max and
shortest distance du, min in dimension u can be easily
calculated. Thus, the longest and shortest distance
between two nodes can be calculated as,

2
,maxPositionMax u

u
d d= ∑

2
,minPositionMin u

u

d d= ∑

The effect of pre-query varies in different
situations. When there are few moving objects, or the
query has nothing to do with motion state, pre-query
does not help much, in some cases, it even make the
query time longer. But when there are lots of moving
objects and the query is somewhat about the motion
state, pre-query can heavily reduce the query time
needed. Even so, however, the efficient of pre-query
is also up to the distribution of motion vectors in
index tree. The percentage of filtered moving objects
is not fixed in all queries. Fig. 2 illustrates this clearly,
it shows time needed for queries of the shortest
distance with and without pre-query process within
different numbers of moving objects.

3.4 Motion Vector Reference in Index Tree
Logically, the motion vectors are contained in the
index tree. But in implementation, they can be stored
into a table and be referenced by leaf node of index
tree. To distinguish different motion vectors, time
stamps in the vectors as well as the moving objects’
IDs are needed. However, in any node of 2n index
tree, the time period is specified. And the vectors
falling into it must be within that period. If the time

stamps in the vectors are recorded directly as part of
the reference, it will bring redundancy.

If the largest number of vectors of the same object
within one leaf node is p, then only 2log p⎡ ⎤⎢ ⎥ bits is
needed and enough to distinguish all the vectors with
different time stamp. For the same object, the motion
vectors in one leaf node can be numbered with
unsigned integer according to their time sequence.
This time number works together with object ID can
distinguish all the motion vectors in one leaf node.

For read and write efficiency, the time coding
should be multiple of byte. On whether and how to
use time coding in vector reference, both storage cost
and read/write efficiency should be taken into
consideration. For example, in MS Windows system,
if time stamp is an instance of COleDateTime(),
which uses 12 bytes, and in any leaf node, the vectors
from the same object will not exceed 256, which can
be represented by one byte, then the storage cost of
index tree with time coding is less than 27% of that
without time coding even when the number of
moving objects reaches 16 million. This is very
important when the index tree is loaded into memory
when system works. It will reduce the memory space
needed and reduce the page demand times.

4 Compare 2n Tree Indexing with
Other Indexing Methods

There are lots of indexing methods introduced in
section 2. Each method is good in this way or that,
and fits for certain application. With motion state
model, 2n tree indexing works well.

Fig. 2: Query time with and without pre-query process

0

0.1

0.2

0.3

0.4

0.5

0.6

10 20 30 40 50 60 70 80 90 100
Number of Moving Objects Queried

Q
uery Tim

e

Without Pre-query
With Pre-query

Proceedings of the 6th WSEAS Int. Conf. on Artificial Intelligence, Knowledge Engineering and Data Bases, Corfu Island, Greece, February 16-19, 2007 178

4.1 Compare with R-tree
R-tree is popularly employed indexing, no matter in
spatial indexing, temporal indexing or moving object
indexing which is both spatial and temporal. Most
studies of index based on R-tree are focused on
moving trajectories, which are represented by linear
function. This representation is simple, certain and
unique, thus can be easily managed by least boundary
box. On the contrary, MSM is based on motion state
vector, which offers different LODs representation of
motion state thus is uncertain and not unique, so that
can not be managed by least boundary box.

Some R-tree based indices also manage the state
of moving objects. For example Q+R tree [38]. The
state it manages is the last collected objects’ state or
the current state. It does not show the motion process
in a period of time.

Besides, R-tree is very complicated with space
partitioning, nodes overlay, etc. It is not as simple as
2n tree in motion state vectors indexing.

4.2 Compare with Spatial-Temporal Grid
Spatial-temporal grid (STG) and 2n tree are both
based on space partitioning. STG can be treated as a
special kind of 2n tree, in which all leaf nodes have
the same size and their splitting/merging operation
happen at the same time. Locating motion vector in
STG is simpler than that in 2n tree. The cell that the
motion vector falls in can be directly calculated from
the vector itself, thus need not searching from the
root node like in 2n tree.

The problem comes with storage. If every cell in
STG is allocated with the same space, it may bring
lots of waste of space when the vector distribution is
not even. If each cell is allocated with different
storage space as it needs, it loses the advantage of
direct locating of victors. And the numbering of cells
also makes it difficult for random access.

4.3 Compare with Quadtree
Obviously quadtree is not suitable for high dimension
vectors. However, one of the solutions is to establish
n-1 quadtrees for n-dimensional index vectors. This
may help in some certain scenarios. But generally, it
brings more storage cost and more query time.

5 Acknowledgment
This research has been supported by China
Scholarship Council and Startup Research Fund for
Fetched in Intelligence of Zhongnan University of
Economics and Law.

References:
[1]. J. Gong, Fundamental of Geographic

Information System, Science Press (Beijing),
2001

[2]. R. A. Finkel, J. L. Bentley, Quad Trees – A Data
Structure for Retrieval on Composite Keys,
Acta Informatica, pages 1-9, 1974.

[3]. N. Beckmann, Hans-Peter Kriegel, The R*-tree:
an efficient and robust access method for points
and rectangles. Proceedings of ACM SIGMOD
International Conference on the Management of
Data, Atlantic City, NJ, May 1990

[4]. T. Sellis, N. Roussopoulos and C. Faloutos, The
R+-tree: a dynamic index for multi-dimensional
objects. Proceedings of the 13th VLDB
Conference, Brighton 1987. pages 507-518.

[5]. A. Guttman, R-tree: a dynamic index structure
for spatial searching. Proceedings of ACM
SIGMOD International Conference on the
Management of Data. 1984

[6]. D. B. Lomet and B. Salzberg, The hB-tree: a
multiattribute indexing method with good
guaranteed performance. ACM Transactions on
Database Systems, 1990, 15(4): 625-658

[7]. J. T. Robinson, The K-D-B-tree: a search
structure for large multidimensional dynamix
indexes. Proceedings of SIGMOD Conference
1981. pages 10-18

[8]. J. H. Friedman, J. L. Bentley and R. A. Finkel,
An algorithm for finding best matches in
logarithmic expected time. ACM Transaction
on Math. Software (TOMS), 1977, 3(3):
209-226.

[9]. N. Katayama, S. Satoh, The SR-Tree: An index
structure for high-dimensional nearest neighbor
queries. Proceedings of 16th ACM SIGMOD,
page 369-380. 1997.

[10]. P. N. Yianilos, Data structure and algorithm for
the nearest neighbor search in general metric
spaces. Proceedings of the 4th Annual
ACM-SIAM Symposium on Discrete Algorithms
(SODA). Austin-Texas, Jan. 1993

[11]. P. Ciaccia, M. Patella and P. Zezula, M-tree: an
efficient method for similarity search in metric
space. Proceedings of the 23rd VLDB
Conference, Athens Greece, 1997

[12]. M. A. Nascimento, Efficient indexing of
temporal database via B+-trees. Ph.D
dissertation, 1996

[13]. B. Salzberg, V. Tsotras, A comparison of access
methods for temporal data. ACM Computing
Surveys, 1999, 31(2): 158-221

Proceedings of the 6th WSEAS Int. Conf. on Artificial Intelligence, Knowledge Engineering and Data Bases, Corfu Island, Greece, February 16-19, 2007 179

[14]. B. Becker, S. Gschwind, T. Ohler, B. Seeger, P.
Widmayer, An asymptotically optimal
multiversion B-Tree. VLDB Journal 1996, 5(4):
264-275

[15]. R. Elmasri, The time index and the monotonic
B+-tree. Proceedings of Theory Design and
Implimentation in Temporal Databases, 1993.
pp. 433-456

[16]. D. Lomet, Transaction time database.
Proceedings of Theory, Design and
Implementation in Temporal Databases, 1993.
pp. 388-417

[17]. V. Kouramajian, The time index+: an
incremental access structure for temporal
databases. Proceedings of 3rd International
Conference on Knowledge and Management,
1994. pp. 296-303

[18]. R. Elmasri, The time index: an access structure
for temporal data. Proceedings of 16th Very
Large Database Conference, Australia, 1990.
pp. 1-12

[19]. R. Elmasri, Efficient implementation techniques
for the time index. Proceedings of 7th
International Conference on Data Engineering,
1991. pp. 102-111

[20]. L. Lin, Indexing value of time sequences.
Proceedings of 5th International Conference on
Information and Knowledge Management
(CIKM), Maryland, USA, 1996. pp. 223-232

[21]. Guoming Du, Study of Process Algorithm of
Series Data and its Application in Urban Water
Supply Network System, Ph.D Dissertation of
Wuhan University, 2002.

[22]. H. Gunadhi, and A. Segev. Efficient indexing
methods for temporal relations. Transactions of
Knowledge and Data Engineering, 1993, 5(3):
496-509

[23]. C. P. Kolovson. Indexing techniques for
historical databases. Proceedings of Theory,
Design and Implementation in Temporal
Databases, 1993. pp. 418-432

[24]. M. Nascimento, J. Silva. Towards historical
R-trees. ACM SAC, 1998

[25]. A. Nanopoulos. Indexing time-series databases
for inverse queries. Proceedings of 1998
International Conference on Database and
Expert System Applications, Vienna, Austria,
1998. pp. 551-560

[26]. G. Kollios, and V. J. Tsotras. Hashing methods
for temporal data. IEEE Transaction on
Knowledge and Data Engineering. 2002, 14(4):
902-919

[27]. V. J. Tsotras. The snapshot index, an I/O
optimal access method for timeslice queries.
Information System, 1995, 3(20): 237-260.

[28]. H. Nozawa, N. Saiwaki, S. Nishida.
Spatio-temporal indexing methods for moving
objects for highly interactive environment.
Proceedings of 1999 IEEE International
Conference on Systems, Man, and Cybernetics,
1999. IEEE SMC '99 Conference, 12-15 Oct.
1999, Volume: 6. Pages: 7–12

[29]. H. D. Chon, D. Agrawal, A. El Abbadi. Using
space-time grid for efficient management of
moving objects. MobiDE, pp. 59-65, May 2001

[30]. H. D. Chon, D. Agrawal, A. El Abbadi. Query
processing for moving objects with space-time
grid storage model. Proceedings of the
International Conferenceon Mobile Data
Management, 2002

[31]. H. Samet. Spatial data structure. VLDB’97
Tutorial, Greece, 1997

[32]. R. Ding, X. Meng. A quadtree based dynamic
attribute index structure and query process.
Proceedings of International Conference on
Computer Networks and Mobile Computing, pp.
446-451, 2001

[33]. J. Tayeb, O. Ulusoy, and O. Wolfson. A
quadtree-based dynamic attribute indexing
method. The Computer Journal, pp. 185–200,
1998

[34]. Y. Tao and D. Papdias. Mv3r-tree: a
spatio-temporal access method for timestamp
and interval queries. Proceedings of the 27th
International Conference on Very Large
Databases. 2001

[35]. D. Pfoser, C. S. Jensen, and Y. Theodoridis.
Novel approaches in query processing for
moving objects. Proceedings of the 26th
International Conference on Very Large
Databases (VLDB), 2000

[36]. S. Saltenis, C. S. Jensen, S. T. Leutenegger, M.
A. Lopez. Indexing the positions of
continuously moving objects. Proceedings of
ACM SIGMOD Conference 2000

[37]. S. Saltenis, C. S. Jensen. Indexing of moving
objects for location-based services. the 18th
International Conference on Data Engineering
(ICDE’02), pp. 463-472, 2002

[38]. Y. Xia, S. Prabhakar. Q+Rtree: efficient
indexing for moving object databases.
Proceedings of the 8th International Conference
on Database Systems for Advanced
Applications (DASFAA 2003), pp. 175 -182,
2003

[39]. H. Ye, J. Gong, J. Pan, Y. Chen, Representation,
Indexing and Retrieval of Moving Objects,
Proceedings of Storage and Retrieval Methods
and Applications for Multimedia 2004, SPIE
Vol.5307: 158-166.

Proceedings of the 6th WSEAS Int. Conf. on Artificial Intelligence, Knowledge Engineering and Data Bases, Corfu Island, Greece, February 16-19, 2007 180

