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Abstract: - This study presents a novel use of attribution for the extraction of knowledge from job shop 
scheduling problem. Our algorithm improves the traditional GA and using knowledge to keep the quality of 
solution. Based on the knowledge, the search space will be leaded to a better search space. In addition, this study 
uses mutation to do local search and refresh the knowledge and population when the solution fall into local 
minimum. Based on those methods, our algorithm will have the intensification and diversification. Those can 
make the algorithm have good convergence and leap for the search space to find the better solution. The 
experiment results show that algorithm steadily and can find the approximate optimal solution. And the 
knowledge is useful in provide the gene selection information. 
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1   Introduction 
Scheduling problems exist everywhere in real-world 
circumstance, especially in the flexible 
manufacturing world. Many people pay close 
attention to it because poor scheduling can lead to 
higher cost for manufacturers and consequently 
higher prices for customer. Therefore, if we want to 
have the better efficiency, we must have a good 
schedule to promote the efficiency and reduce the 
time in the manufacturing process. Nevertheless, 
scheduling problems are categorized into different 
groups in the different machine environment (e.g., 
single machine problems, parallel machine problems, 

job shop problems, etc,). In those groups, job shop 
problem (JSP) emphasizes the order of job in the 
every machine. In the other word, it considers the 
order of every operator of job but not prescribes 
which machine is the first machine for the job. As a 
result, JSP is more complicated than other scheduling 
problem. Therefore, this study has focused on the JSP 
problem. 

JSP is among the hardest combinational 
optimization problem. Most of the researches used 
different approaches to solved JSP such as: Tabu 
search [6, 12], simulated annealing [15, 19], ant 
colony system [1], neural network algorithm [2], 
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genetic algorithm (GA) [5, 7, 13, 20], and others. 
GA-based approach was used to solve JSP problem 
considerably in recent years among these studying. 
Cheng, Gen, and Tsujimura [17] have given a 
detailed sort survey on papers using GA to solve 
classical JSP in Part surveyⅠ . Nevertheless, using 
traditional GA can’t give consideration convergence 
rate, quality of solution and stability of search 
process. On the other hand, this algorithm can’t 
balance intensification and diversification. Ignore the 
intensification will spend much time to search. And 
disregard the diversification will fall into local 
minimum easily. So many researches tried modify 
GA with other algorithm. Cheng [18] discuss various 
hybrid GA to solve JSP.  

In recent years, many researches wanted to 
improve intensification or diversification. Mattfeld 
and Bierwirth [3] used a heuristic reduction of search 
space which can help GA to find better solution in a 
shorter computation time. Goncalves, Mendes, and 
Resende [11] constructed the scheduling to generate 
parameterized active schedules and used a local 
search heuristic to improve the solution in 
evolutionary process of GA. To sum up, there studies 
focused on improving the search space. Therefore, 
better solutions could be expected but the quality of 
solutions could not be guarded. Watanabe, Ida and 
Gen [14] use GA with modified crossover operator 
for JSP problem. It made use of random number to 
decide what gene must be reserved for children 
chromosome. If the offspring do not conform to 
constrain the JSP problem, it will be regulate by some 
rules. This paper changed the traditional crossover 
operator and considered influence of each gene. 
Nevertheless, using the random number to decide 
which gene can be retained to offspring did not 
exclude random effect. 

In order to keep the quality of solutions, some 
studies used the better chromosome to replace the bad 
chromosome. This method is accomplished by first 
coping some of the best individuals from each 
generation to the next, in what is called an elitist 
strategy [7]. Chang, Hsieh and Hsiao [16] reserved 
some better chromosomes and replaced some bad 
chromosomes in each generation. Those methods 
supposed that if there is a better population, it will the 
easy to produce the better offspring in crossover 
operator. However, it was not exactly so and it may 
easy to fall into local minimum. For this reason, we 
propose the idea that if we can evaluate the fitness for 
genes and choose the better gene to generate the 
offspring which may lead to a better solution. And if 
reserving the better chromosomes can help the 
quality of solution, those better chromosomes may be 

have useful information for finding the better 
solution. 

Based on those ideas, we will collect some best 
solutions by GA to sort some knowledge and use it to 
evaluate the fitness for gene. And then make use of 
concluded result to design the suitable crossover 
operator for JSP problem. Hope to use this idea to 
speed up the convergence and improve the solution 
for JSP problem. Beside, we use mutation to do the 
local search, hope this can keep the diversification 
and avoid intensification overly. We will describe the 
design and the logic behind this method. And use the 
experiment to demonstrate the feasibility. This 
research is a new attempt and which can apply to 
other optimization problem. Therefore, it is a very 
important problem and merit discussion about it. 
 
 
2   Literature review 
 
2.1 Job-shop scheduling problem (JSP) 
JSP problem has been described as follows [4]: there 
are m different jobs and n different machines to be 
scheduled. Each job is composed of a set of operation 
and the operation order on each machine is 
prespecified. The required machine and the fixed 
processing time characterize each operation. A 
schedule is an allocation of the operations to time 
intervals on the machines. According to the allocated 
operation sequences in a schedule, the time required 
to complete all jobs is called makespan of the 
schedule. Table 1 shows a 3×3 JSP problem and 
concluded operations, job number, machine number, 
process time. For example, when we observe J1 and 
O1, it means that operation 1 of job 1 be arranged for 
machine 2 (M2) and spend 2 time units. 

 
Table 1. Example of 3×3 JSP problem 

 
 
2.2 Genetic Algorithm for Job-shop 

Scheduling Problem 
Genetic algorithm (GA) is one of the stochastic 
search algorithms based on biological evolution. In 
order to solve a clearly defined problem and an 
offspring represented the candidate of solutions. GA 
is according to crossover and mutation operators with 
their probabilities to produce a set of offspring 
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chromosomes. As we know, GA likes an over and 
over process, an iteration is called a generation. A run 
means the whole set of generations. We try to find 
one or more highly fit chromosomes. 
Recently, there have more and more papers used 
hybrid GA to solve optimum problem. Because of 
GA provides quite simple structure, process and it 
has strong abilities of solving and searching. 
Furthermore, GA searches multiple points in search 
space of population by evolution of generations and 
characteristic of search randomly. The abilities can 
avoid GA dropping in the local optimum and toward 
the global optimum. Whitley [3] introduced 
designing GA has two important issues: selection 
pressure and population diversity. Selection pressure 
leads GA to exploit information from the fitter 
individuals and produces more superior offspring 
iteratively. The diversity in GA is concerned about 
the population, which contains a certain number of 
encoded individuals for exploration. Therefore, we 
must to find a good tradeoff between exploration and 
exploitation consideration of both convergence speed 
and optimized solution quality. Masato etc. [10] 
proposed the modified GA with search area 
adaptation (mGSA) for solving JSP that does not 
need such crossover operator in GSA. Goncalves etc. 
[7] presented a hybrid genetic algorithm for the 
job-shop scheduling problem. It used the 
chromosome representation of the problem is based 
on random keys. The scheduled used a priority rule in 
which are defined by GA. 

 
 

3   The proposed modified TGA 
Our algorithm was modified GA’s deficiency. We 
use some better solutions (chromosomes) to collect 
knowledge and designing a eugenic crossover. 
However, those better solutions just bring the limited 
information. We can understand the machine number 
and processing time for this operation, but we can not 
collect the integrate information. Therefore, we 
design the operation table to classify those operations 
before collecting knowledge. Use knowledge to 
decide the fitness of gene in crossover operator and 
adjust the chromosome.  

Hsieh and Hsiao [16] reserved some better 
chromosomes and replace some bad chromosome in 
each generation and improve the solution of GA. 
According to this result, we can assume that those 
better chromosomes may be included some useful 
information for improve solution. But GA can not 
demonstrate repeat-ability or provide an explanation 
of how a solution is developed. For this reason, we 
can’t induce information from the solutions of GA. 

Therefore, we will use the method which was brought 
up by Koonce and Tsai [4]. This method used 
attributions to induce information from the solution 
of GA.  

Better solutions (chromosome) may be have some 
information and can help us to find optimal solution. 
Therefore, we could take advantage of those better 
solutions to collect knowledge. The KGA process 
was described as following: 
Step1: Create initial population. 
 We used random number to produce some 
chromosomes. 
Step2: Compute fitness value. 
 Transform the makespan into the fitness value. If the 
chromosome has lesser makespan, it will have the 
higher fitness value. 
Step3: Generate new generation. 
 When we have initial population and fitness value, 
we will use those data to do the next step. 
Step4: Select population. 
 We use the roulette wheel method to select two 
chromosomes. This step is the same with GA. 
Step5: Crossover. 
 In the blended crossover, we must select which 
crossover operator by generation number. If the child 
was not better than one of parents, we must do the 
mutation. 
Step6: Mutate. 
 In the forced mutation, we will mutate the child 
which is not better than parents in crossover. 
Step7: Meet the population size or not. 
 If this generation has enough population, this 
generation will be over. 
Step8: Compute fitness value. 
 In this process, we will compute fitness value of new 
population and using new population in the next 
generation. 
Step9: Reach the generation number or not. 
 If the KGA process has enough generation number, 
the algorithm will be over. Otherwise, continuing the 
KGA and determine the solution fall into local 
minimum or not. 
Step10: If the solution fall into local minimum or not. 
 If the best solution in each generation had not change 
several times, we will determine the solution has fall 
into local minimum. When the solution does not fall 
into local minimum, we will collect the better 
solution from this generation. The collecting of the 
better solution is the same the part 1. If the solution is 
better than one of the better solution which was 
retained, we will retain this solution until the solution 
fall into local minimum. When the solution was fells 
into local minimum, we will collect new knowledge 
and refresh knowledge by new knowledge. 
Step11: Refresh population 
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 When the solution fell into local minimum, we must 
refresh knowledge. And this situation was 
represented this search space that can’t find the better 
solution. So we must refresh the population and 
search other space again. In the refresh population 
process, we will sort the original population by 
fitness value and selecting the first 20% population to 
new population. The other new population was 
produced by random number. 

 
 

4   Experiential results 
The following experiments showed the 10×10 JSP 
benchmarking problems solving only for the purpose 
of illustrating the computational procedure discussed 
above.  In this experiment, we use KGA for the 
10×10 benchmark problem. This problem was 
generated by Fisher and Thompson. Lawler et al. [6] 
report that within 6000s when applying a 
deterministic local search to this problem and find 
more than 9000 local optima. It is perceived that this 
problem has the difficult to find the optimal solution. 
Besides, it was proved that the optimal makespan is 
930. We can use this result to determine whether the 
solution by KGA is good or not. Figure 1 shows the 
result by GA and KGA. In this Figure 1, the best 
solution by KGA is 936 and by GA is 1053. And it 
just spent 440 generations to find the makespan 964. 
This result proved that KGA had faster convergence 
than GA and its result better than GA. Table 2 shows 
the progress of the 10×10 benchmark instance. 
According to this table, we can know that we did not 
find the optimal makespan, but the solution by our 
algorithm is very close the optimal makespan. Figure 
2 shows the makespan for KGA for 100 time trial. 
We can find that most of the solutions fall into the 
range between 960 and 969. This result can represent 
our algorithm is steady. And the best solution by 
KGA is 936. This solution is not the optimum 
solution, but it is close the optimum solution. For 
those result, we can prove KGA is useful and using 
the knowledge can improve the quality of solution. 
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Figure  1. The makespan of the 10×10 benchmark 

problem 

 
Table 2. Progress of the 10×10 benchmark instance 
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Figure 2. The makespan for KGA (run 100 times) 

 
 
5   Conclusion Remarks 
According to those experiments, we can obtain some 
conclusions. The first, the knowledge is useful. In the 
eugenic crossover, the knowledge was used to 
evaluate the fitness-gene and retained the higher 
fitness-gene in offspring. This method can raise the 
quality of offspring and produce better offspring. 
Based on this result, the knowledge is useful in 
provide the gene selection information. But this 
method will make the algorithm fall into local 
minimum easily. This is because when we can find 
the better solution than GA, the knowledge becomes 
useless. Therefore, the knowledge must be renewed 
in KGA process. The second, this algorithm can raise 
the convergence. Because the algorithm used the 
knowledge to improve the crossover, it will be leaded 
to search the specific space. For this reason, the 
method could search out the better offspring in short 
time and raised the convergence. The third, the 
algorithm can balance the intensification and 
diversification. This algorithm used the knowledge to 
search special space and improve the convergence. 
Therefore, this method achieves the intensification 
which makes the algorithm to search the space where 
better solution exists.  
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