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Abstract: - The aim of the paper is to present an original homogenization method for elliptic equations applied 

to pre-impregnated composite materials, known as prepregs. In this class of prepregs can be included Sheet- 

and Bulk Molding Compounds. Sheet Molding Compounds (SMC) are characterized, in general, as multiphase 

heterogeneous and anisotropic composite materials with randomly discontinuous reinforcement. The upper 

and lower limits of the homogenized coefficients for a 27% fiber volume fraction SMC are computed. It is 

presented a comparison between the upper and lower limits of the homogenized elastic coefficients of a SMC 

material and the experimental data. The computing model used as a homogenization method of these 

heterogeneous composite materials, gave emphasis to a good agreement between this method and 

experimental data. 
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1   Introduction 
Theoretical researches regarding the behaviour of 

heterogeneous materials lead to the elaboration of 

some homogenization methods that try to replace a 

heterogeneous material with a homogeneous one. 

The aim is to obtain a computing model which takes 

into account the microstructure or the local 

heterogeneity of a material. 

     The homogenization theory is a computing 

method to study the differential operators 

convergence with periodic coefficients. This method 

is indicated in the study of media with periodic 

structure. The most obvious mechanical model 

which reflects this model is a Sheet Molding 

Compound (SMC) material. A SMC is a pre-

impregnated composite material, known as prepreg, 

chemically thickened, manufactured as a continuous 

mat of chopped glass fibers, resin (known as 

matrix), filler and additives, from which blanks can 

be cut and placed into a press for hot press molding. 

The result of this combination of chemical 

compounds is a heterogeneous, anisotropic 

composite material reinforced with randomly 

disposed discontinuous reinforcement [1], [2], [3]. 

     The matrix- and fillers elastic coefficients are 

very different but periodical in spatial variables. 

This periodicity or frequency is suitable to apply the 

homogenization theory to the study of 

heterogeneous materials like SMCs. 

2   Problem formulation 
Let us consider Ω a domain from R

3
 space, in 

coordinates xi, domain considered a SMC composite 

material, in which a so called substitute matrix (resin 

and filler) is represented by the field Y1 and the 

reinforcement occupies the field Y2 seen as a bundle 

of glass fibers, (fig. 1). 

     Let us consider the following equation [4]: 
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     In the case of SMC materials that present a 

periodic structure containing inclusions, aij(x) is a 

function of x. If the period’s dimensions are small in 

comparison with the dimensions of the whole 

domain then the solution u of the equation (1) can be 

considered equal with the solution suitable for a 

homogenized material, where the coefficients aij are 

constants. 

     In the R
3
 space of yi coordinates, a parallelepiped 

with 0
iy  sides (fig. 1) is considered, as well as 

parallelepipeds obtained by translation 0
ii yn  (ni 

integer) in axes directions. 

     The functions: 
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can be defined, where η is a real, positive parameter. 

Notice that the functions aij(x) are ηY-periodical in 

variable x (ηY being the parallelepiped with 0
iyη  

sides). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Domains- and inclusions’ periodicity 

definition of SMC composite materials [4] 

 
     If the function f(x) is in Ω defined, the problem at 

limit can be considered: 
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     Similar with equation (2), the vector ηp
�

 can be 

defined with the elements: 
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     For the function )(xuη  an asymptotic 

development will be looking for, under the form: 
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where u
i
(x,y) are Y-periodical in y variable. The 

functions u
i
(x,y) are defined on Ω x R

3
 so that the 

derivatives behave in the following manner: 
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,  are compared in two 

homologous points P1 and P2, homologous through 

periodicity in neighbour periods, it can be notice that 

the dependence in 
η
x
 is the same and the 

dependence in x is almost the same since the 

distance P1P2 is small (fig. 2). Let us consider P3 a 

point homologous to P1 through periodicity, situated 

far from P1. The dependence of u
i
 in y is the same 

but the dependence in x is very different since P1 

and P3 are far away. For instance, in the case of two 

points P1 and P4 situated in the same period, the 

dependence in x is almost the same since P1 and P4 

are very close, but the dependence in y is very 

different since P1 and P4 are not homologous 

through periodicity. The function u
η
 depends on the 

periodic coefficients aij, on the function f(x) and on 

the boundary Ω∂ . The development (6) is valid at 

the inner of the boundary Ω∂ , where the periodic 

phenomena are prevalent but near and on the 

boundary, the non-periodic phenomena prevail [5], 

[6], [7], [8], [9]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. Physical meaning of SMCs inclusions’ 

periodicity [4] 

 

Using the development (6), the expressions 
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 and ηp  can be computed as following: 
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     The function f(x) presented in equation (4) can be 

written in the following manner: 
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     The terms η
-1
 and η

0
 will be: 
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     Equation (13) leads to the homogenized- or 

macroscopic equation. For this, we introduce the 

medium operator defined for any function Ψ(y), Y-

periodical: 
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Y
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where Y  represents the periodicity cell volume. To 

obtain the homogenized equation, the operator (14) 

is applied to the equation (13): 
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     According to the operator (14), the second term 

of the left side of the equation (15) becomes: 
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     Due to Y-periodicity of 1
ip  and the fact that n  is 

the normal vector at the boundary of Y, the relation 

(16) is equal with zero. So, the equation (15) 

becomes: 

.
x

P
)x(f

i

0
I

∂

∂
−=               (17) 

     With help of relation (10), the equation (12) can 

be written as follows: 
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The solution u
1
(y) of equation (19) is Y-periodical 

and to determine it is necessary to introduce the 

space { }periodicaluY),Y(Hu)Y(U 1
y −∈= . The 

equation (19) is equivalent with the problem to find 

the solution y
1 Uu ∈  that verifies: 
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for yUv∈∀ . If y
k U∈χ  is introduced, with 

0k =χ , that satisfy: 
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for yUv∈∀ , then from the linearity of problem 

(20), its solution can be written under the form: 
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where c(x) is a constant as a function of x. Knowing 

the expression of u
1
 as a function of u

0
, from the 

expressions (10) with (22), the homogenized 

coefficients can be computed: 
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     Applying the medium operator (14), the relation 

(23) can be written: 
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     Therefore, the relation (15) becomes an equation 

in u
0
 with constant coefficients: 
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     For a composite material in which the matrix 

occupies the domain Y1 and presents the coefficient 
1
ija , and the inclusion occupies the domain Y2 with 

the coefficient 2
ija  separated by a surface Γ, the 

equation (3) must be seen as a distribution. 
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3   Problem solution for a SMC 
In the case of a SMC composite material which 

behaves, macroscopically, as a homogeneous elastic 

environment, is important the knowledge of the 

elastic coefficients. Unfortunately, a precise calculus 

of the homogenized coefficients can be achieved 

only in two cases: the unidimensional one and the 

case in which the matrix- and inclusion coefficients 

are functions of only one variable. For a SMC 

material is preferable to estimate these homogenized 

coefficients between an upper and a lower limit. 

     Since the fiber volume fraction of common 

SMCs is 27%, to lighten the calculus, an ellipsoidal 

inclusion of area 0,27 situated in a square of side 1 

is considered. The plane problem will be considered 

and the homogenized coefficients will be 1 in matrix 

and 10 in the ellipsoidal inclusion. In fig. 3, the 

structure’s periodicity cell of a SMC composite 

material is presented, where the fibers bundle is seen 

as an ellipsoidal inclusion. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. Structure’s periodicity cell of a SMC material 

with 27% fibers volume fraction 

 

     Let us consider the function f(x1, x2) = 10 in 

inclusion and 1 in matrix. To determine the upper 

and the lower limit of the homogenized coefficients, 

first the arithmetic mean as a function of x2 followed 

by the harmonic mean as a function of x1 must be 

computed. The lower limit is obtained computing 

first the harmonic mean as a function of x1 and then 

the arithmetic mean as a function of x2. If we write 

with φ(x1) the arithmetic mean against x2 of the 

function f(x1, x2), it follows: 
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     The upper limit is obtained computing the 

harmonic mean of the function φ(x1): 
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     To compute the lower limit, we consider ψ(x2) 

the harmonic mean of the function f(x1, x2) against 

x1: 
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     The lower limit will be given by the arithmetic 

mean of the function ψ(x2): 
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4   Results 
Since the ellipsoidal inclusion of the SMC structure 

may vary angular against the axes center, the upper 

and lower limits of the homogenized coefficients 

will vary as a function of the intersection points 

coordinates of the ellipses, with the axes x1 and x2 of 

the periodicity cell. In table 1, the upper and lower 

limits of the homogenized coefficients for a SMC 

material is presented and table 2 shows the basic 

elasticity properties of the isotropic compounds. 

     The material’s coefficients estimation depends 

both on the basic elasticity properties of the 

isotropic compounds and the volume fraction of 

each compound. If we write PM, the basic elasticity 

property of the matrix, PF and Pf the basic elasticity 
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property of the fibers respective of the filler, φM the 

matrix volume fraction, φF and φf the fibers- 

respective the filler volume fraction, then the upper 

limit of the homogenized coefficients can be 

estimated computing the arithmetic mean of these 

basic elasticity properties taking into account the 

volume fractions of the compounds also: 

.
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A

ffFFMM ϕϕϕ ⋅+⋅+⋅
=+             (33) 

     The lower limit of the homogenized elastic 

coefficients can be estimated computing the 

harmonic mean of the basic elasticity properties of 

the isotropic compounds: 
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where P and A can be the Young modulus respective 

the shear modulus. 

Table 1: Upper and lower limits of the homogenized 

coefficients for a SMC materials 

Angular 

variation of the 

ellipsoid 

inclusion 

Upper limit a
+
 Lower limit a_ 

0° 2,52 0,83 

± 15° 2,37 0,851 

± 30° 2,17 0,886 

 

Table 2: Basic elasticity properties of the isotropic 

compounds and the volume fractions of the SMC 

compounds 

 
Matrix 

E-fiber 

glass 
Filler 

Young mod. E [GPa] 3,52 73 47,8 

Shear mod. G [GPa] 1,38 27,8 18,1 

Volume fraction [%] 28 27 45 

 

     The glass fibers represent the basic element of 

SMC prepreg reinforcement. The quantity and 

orientation of the rovings determine, in a decisive 

manner, the subsequent profile of the SMC 

structure’s properties.  

     There are different grades of SMC prepregs: R-

SMC (with randomly oriented reinforcement), D-

SMC (with unidirectional orientation of the chopped 

fibers), C-SMC (with unidirectional oriented 

continuous fibers) and a combination between R-

SMC and C-SMC, known as C/R-SMC. 

     The following micrographs present the extreme 

heterogeneity and the layered structure of these 

materials as well as the glass fibers and fillers 

distribution. The micrographs show that there are 

areas between 100…200 µm in which the glass 

fibers are missing and areas where the fibers 

distribution is very high. 

 

 
 

 
 

 
 

 
Fig. 4. Micrographs of various SMCs taken in-plane 

and perpendicular to their thickness [8] 
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Figure 5 shows the Young moduli and figure 6 

presents the shear moduli of the isotropic SMC 

compounds and the upper and lower limits of the 

homogenized elastic coefficients. 
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Fig. 5. The values of Young moduli of the isotropic 

SMC compounds and the upper and lower limits of 

the homogenized elastic coefficients 
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Fig. 6. The values of shear moduli of the isotropic 

SMC compounds and the upper and lower limits of 

the homogenized elastic coefficients 

5   Conclusions 
The presented results suggest that the environmental 

geometry given through the angular variation of the 

ellipsoidal domains can leads to different results for 

the same fibers volume fraction. This fact is due to 

the extreme heterogeneity and anisotropy of these 

materials. 

     The upper limits of the homogenized elastic 

coefficients are very close to the experimental data. 

     The proposed estimation of the homogenized 

elastic coefficients of pre-impregnated composite 

materials can be extended to determine the elastic 

properties of any multiphase, heterogeneous and 

anisotropic composite materials. 
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